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Background (1)

B Elliptic Curve Cryptography (ECC)

® |n 1985, N. Koblitz and V. Miller independently proposed using elliptic
curves to design public-key cryptographic schemes.

® Ex. elliptic curve-based signature, public-key encryption, etc...

® Advantages are the higher cryptographic strength per bit in
comparison with RSA and the higher speed in implementations.

B The security of ECC = The hardness of the ECDLP

® ECDLP = Elliptic Curve Discrete Logarithm Problem
M This is somewhat mathematical problem.

® No efficient algorithm for the ECDLP is known except special cases.
M Special cases = supersingular case, anomalous case, eftc...




Background (2)

B Experimental reports of solving the ECDLP
® Certicom ECC Challenge (1997~)

Table: Status of the Certicom ECC Challenge

Year | ECC2 | ECC2K | ECCp o | |
(in bits) | (in bits) | (in bits) ECC2 = Elliptic curves over binary fields

1997 79 79 ECC2K = Koblitz curves

1998 97 95 g7 | ECCp = Elliptic curves over prime fields

1999

2000 108

288; 109 10,000 PCs for 18months

2882 109 le 2,600 PCs for 17months

2.0.1.0 1307 In progress (October 2009 ~)

><¢112-bit prime ECDLP solved (not in Certicom ECC Challenge) < current record
200 PS3 for 6 months (January 2009 ~ July 2009)
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Our motivation

B The problem of past experimental reports to evaluate the
security of ECC:

® Due to variance calculation by volunteers all over the world, detail
data for solving the ECDLP is uncertain.

® Past experiments were not implemented under an union environment.

v

We cannot evaluate the security of ECC accurately
from past experimental reports.




Our work

B Evaluate the security of ECC

® \We extract detail data for solving the ECDLP from experiments under
an union environment.

® \We evaluate the security strength balance between types of elliptic
curves.

B Types of elliptic curves: ECC2, ECC2K, ECCp.

B Compare the security strength between ECC and RSA

® Using our past data of the security of RSA
M In the past, we evaluated the security of RSA with our factoring device.

' Our factoring

S device
e In the next page, we
explain our work in detail.
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ECDLP

E/GF(q) : an elliptic curve
B (The hardness of the ECDLP)

= (The security of ECC)

S : a point
of order n

B ECDLP over GF(q):
® Given (E,q,n, S, T)
® Find the integer d with T =dS

B Remark

® For a large prime number n
(160bit), we cannot solve the
ECDLP in realistic time at present.

T : an element
of {S)

1L

Find d with T =dS.

xWe fix this notation.




Pollard’s rho method (1)

B The strongest known attack for the ECDLP (generic curves)
Is Pollard’s rho method.

B The basic idea:
® Search for the two distinct pairs (c;, d;), (c;, d;) with
cS+d-T=c¢-S+d-T
® Then we obtain the solution d with T = dS:
(ci—¢)*S = (d—d)-T=(d—d)-dS
d=(c-¢)(di-d)" modn

We explain the method to search
(c, d), (c;, d;) in the next page.




Pollard’s rho method (2)

B Choose an iteration function f:
(S)—<(S)

® |t is easy compute a, b with f(X)
=a*S+Db'T
® f: quasi-random

B ForX=a-S+b-T, define X,
= f(X) with X, = X.
® Then we can compute ¢, d, with
Xi=¢S+d-T

B I[mprovement:
® Parallel version
® Distinguished points

M |t is a collision detection
technique

A collision X; = X; is obtained!!
Then we have (¢, d)), (¢, d) with
GPS AF 0T = GRS er Gl T

Y

X, =1(X,) For any i, we have

X, =c-S+d-T
X = f(X,)

a starting point
Xo=X=a*S+b-T




Remarks on Pollard’s rho method

B The running time = #(iterations before a collision is
obtained) X t(f)
® {(f) = the running time of an iteration function f

® #(iterations before a collision is obtained) ~ (7t n/2)"?if f : random

M |t is heavily dependent on the choice of an iteration function f. (see below
for example)

Table: Performance of iteration functions on elliptic curves over prime fields [Te]

Iteration functions fo fog frapo; frmite.4
Av. of iterations /(7 n/2)V2| 1.28 1.29 1.03 1.04
fo : Pollard’s original iteration function - /

Y
These iteration functions
are suitable for solving

the ECDLP.

fog : Pollard’s generalized iteration function
frapo; - Teske’s L-addiding walk with L =20
frmpe:4) - Teske’s mixed-walk with 16 mult. and 4 sqr.

[Te] E. Teske, “On random walks for Pollard’s rho method”, .
Math. Comp. 70 (2001). How about on Koblitz curves?
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Pollard’s rho method for the
ECDLP on Koblitz curves
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Review on Koblitz curves

B Koblitz curves were first suggested for use in cryptography
by Koblitz.
® The defining equation E: y? + xy =x3+ax?+ b
M a, b : elements of GF(2) with b # 0.

® The advantage of these curves is that point multiplication algorithms
can be devised.

B Frobenius map ¢ : E(GF(2M)) — E(GF(2m))

® ¢:(xy)— (X3 y?)
M |t is a group homomorphism of order m

M It can be efficiently computed since squaring in GF(2™) is relatively
inexpensive.
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Speeding Pollard’s rho method for

Koblitz curves

B Using the Frobenius map ¢, the rho method for Koblitz
curves can be sped up.

B The basic idea:
® Define an equivalence relation: —
"P~QeP=+0)Q)for some ) obtained on £/~
M [P] = the representative of the equivalence class.
® (P, = ¢ (P), £ p2%P), ---+}: equivalence class, # = 2m
® Consider an iteration functionfon E / ~
M E/ ~ : the set of the representatives [P].

B Expected #(iterations):
® 1/2-(7tn/m)"2 if f: randomon E / ~
B Speed up by (2m)"?2 fon E/~
W #(E/~) =n/(2m)

@® = the representative

What is a suitable fon E/ ~ ? - ( )=the equivalence class




Our iteration function on E/~

B \We define an iteration function on E/~:
® j=hash_(L(P)), L : labeling function, 0 = s = m.
® For s = 0, our iteration function is the same as that proposed by [GLV].

2P if j<s

1,(P)= P+ ¢’ (P) otherwise

B Properties:
® |t is a well-defined map on E/~.

® \We can compute f, with high speed as the parameter s becomes
large.
B A point doubling on elliptic curves is in general faster than a point
addition.

[GLV] R. Gallant, R. Lambert and S. Vanstone, “Improving the Paralleized Pollard Lambda Search on Binary
Anomalous Curves”, Mathematics of Computation 69, pp. 1045-1062 (2000).
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Performance of our iteraiton
function on Koblitz curves
(Experimental investigation)
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Description of experiments

B To analyze the performance of our iteration function, we
attacked the ECDLP on Koblitz curves.

® Parallelized Pollard’s rho method with 10 processors.
B Distinguished points (collision detection)

® \We attacked the ECDLP on Koblitz curves of relatively small
parameters for 100 times with randomly chosen starting points.

M The parameters are ECC2K-
41, 53, 83, 89. (Koblitz curves
over GF(2™) with m = 41, 53,
83, 89)




Experimental results

B \We summarize the performance of f with s=0, m/5, m/3, m/2.

Table: Performance of our iteration function f§.

Our iteration function f s=0 s=m/5 s=m/3 | s=m/2
ECC2K-41 1.06 1.14 1.29 1.17
ECC2K-53 1.10 0.96 1.12 1.26
ECC2K-83 1.03 0.99 1.25 1.16
ECC2K-89 1.01 1.20 1.08 1.29

Av. of iterations / Exp. 1.05 1.07 1.18 1.22

Exp. = 1/2 (1t n/m)"2 : the expected number of iterations before a collision is obtained.

B [nvestigation:

® f_ with s = 0 is suitable for solving the ECDLP on Koblitz curves.

m f, with s= 0 has a performance almost same as the random function on
E/~
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Our results on the
security of ECC
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Our estimation of computating
power required to break ECC (1)

B \We estimate computing power required to break ECC in a
year (FLOPS) using Pollard’s rho method.
® Review: the running time = #(iterations) X t(f)
H t(f) : the computational speed of an iteration function f.

B The method of our estimation:

® For #(iterations), we use our experimental results under our union
environment.
M In this talk, we only explain the performance on Koblitz curves.

® For {(f), we use the latest data:
W ECCp : 1772cycle / iteration (224bit) [1]
W ECC2 : 1047cycle / iteration (131bit) [2]

[1] Bernstein, “Curves25519 : new Diffie-Hellman speed records”, PKC 2006.
[2] Bailley, et al. “The Certicom Challenge ECC2-X", SHARCS 2009.
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Our estimation of computating
power required to break ECC (2)

using Pollard’s rho method. (FLOPS, exponent of 10)

Table: Computing power required to break ECC in a year
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Our estimation of computing power
required to break RSA (our previous work)

B In the past, we evaluated the security of RSA cryptosystem by breaking
RSA with our factoring devise.

Table: Computing power required to break RSA in a year
using GNFS (FLOPS, exponent of 10)
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Comparision of the security strength
between ECC and RSA

RSA

Current breakable
security level !l

-RSA-768 solved (2010)
-ECCp-112 solved (2009)

Our estimation:
RSA-1024

=ECCp-138, ECC2-137,
ECC2K-142

in bits of key size -
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Conclusion

B \We extracted detail data for solving the ECDLP from
experiments under our union environment.
® Parallelized Pollard’s rho method with 10 processors

® \We analyzed the performance of many iteration functions on elliptic
curves

M |n this talk, we only explained the performance of our iteration function on
Koblitz curves.

B \We evaluated the security of ECC and compared the security
strength between ECC and RSA.
® The security balance between types of elliptic curves.

® RSA-1024 = ECCp-138, ECC2-137, ECC2K-142
B cf. RSA-1024 = ECC-160~223 (NIST SP800-57)
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