

2010年6月11日(金) 15:15 - 15:45 「暗号理論の安全性を支える数論アルゴリズムとその応用」 グローバルCOEプログラム マス・フォア・インダストリ主催

On the security evaluation of elliptic curve cryptography

Masaya Yasuda (FUJITSU LABORATORIES LTD.)

shaping tomorrow with you

九州大学 伊都キャンパス 数理学研究教育棟B1 大会議室11

Background (1)

Elliptic Curve Cryptography (ECC)

- In 1985, N. Koblitz and V. Miller independently proposed using elliptic curves to design public-key cryptographic schemes.
 - Ex. elliptic curve-based signature, public-key encryption, etc...
- Advantages are the higher cryptographic strength per bit in comparison with RSA and the higher speed in implementations.

■ The security of ECC ≒ The hardness of the ECDLP

- ECDLP = Elliptic Curve Discrete Logarithm Problem
 - This is somewhat mathematical problem.
- No efficient algorithm for the ECDLP is known except special cases.
 - Special cases = supersingular case, anomalous case, etc...

Background (2)

Experimental reports of solving the ECDLP

Certicom ECC Challenge (1997~)

Table: Status of the Certicom ECC Challenge

※112-bit prime ECDLP solved (not in Certicom ECC Challenge) ← current record 200 PS3 for 6 months (January 2009 ~ July 2009)

Our motivation

The problem of past experimental reports to evaluate the security of ECC:

- Due to variance calculation by volunteers all over the world, detail data for solving the ECDLP is uncertain.
- Past experiments were not implemented under an union environment.

We cannot evaluate the security of ECC accurately from past experimental reports.

Our work

Evaluate the security of ECC

- We extract detail data for solving the ECDLP from experiments under an union environment.
- We evaluate the security strength balance between types of elliptic curves.

Types of elliptic curves: ECC2, ECC2K, ECCp.

Compare the security strength between ECC and RSA

- Using our past data of the security of RSA
 - In the past, we evaluated the security of RSA with our factoring device.

Our factoring device

In the next page, we explain our work in detail.

ECDLP and Attacks

ECDLP

Find d with T = dS.

We fix this notation.

Pollard's rho method (1)

The strongest known attack for the ECDLP (generic curves) is Pollard's rho method.

The basic idea:

• Search for the two distinct pairs (c_i, d_i) , (c_j, d_j) with $c_i \cdot S + d_i \cdot T = c_i \cdot S + d_i \cdot T$

Then we obtain the solution d with T = dS:

$$(c_i - c_j) \cdot S = (d_j - d_i) \cdot T = (d_j - d_i) \cdot dS$$

 $d = (c_i - c_j) \cdot (d_j - d_i)^{-1} \mod n$

We explain the method to search (c_i, d_i) , (c_j, d_j) in the next page.

Pollard's rho method (2)

- It is easy compute a, b with f(X)
 = a S + b T
- f : quasi-random

For
$$X = a \cdot S + b \cdot T$$
, define $X_{i+1} = f(X_i)$ with $X_0 = X$.

- Then we can compute c_i, d_i with X_i = c_i · S + d_i · T
- Improvement:
 - Parallel version
 - Distinguished points
 - It is a collision detection technique

A collision $X_i = X_i$ is obtained!! Then we have (c_i, d_i) , (c_j, d_j) with $c_i \cdot S + d_i \cdot T = c_i \cdot S + d_i \cdot T$ $X_i = X_i$ $X_2 = f(X_1)$ For any i, we have $X_i = c_i \cdot S + d_i \cdot T$ $X_i = f(X_0)$ a starting point $X_0 = X = a \cdot S + b \cdot T$

Remarks on Pollard's rho method

- The running time = #(iterations before a collision is obtained) × t(f)
 - t(f) = the running time of an iteration function f
 - #(iterations before a collision is obtained) ~ (π n/2)^{1/2} if f : random
 It is heavily dependent on the choice of an iteration function f. (see below for example)

Table: Performance of iteration functions on elliptic curves over prime fields [Te]

Iteration functions	f _P	f _{PG}	f _{TA[20]}	f _{TM[16:4]}
Av. of iterations $/(\pi n/2)^{1/2}$	1.28	1.29	1.03	1.04

f_P : Pollard's original iteration function

f_{PG} : Pollard's generalized iteration function

 $f_{TA[20]}$: Teske's L-addiding walk with L =20

 $f_{TM[16:4]}$: Teske's mixed-walk with 16 mult. and 4 sqr.

These iteration functions are suitable for solving the ECDLP.

[Te] E. Teske, "On random walks for Pollard's rho method", Math. Comp. 70 (2001).

How about on Koblitz curves?

Pollard's rho method for the ECDLP on Koblitz curves

Review on Koblitz curves

Koblitz curves were first suggested for use in cryptography by Koblitz.

- The defining equation E: $y^2 + xy = x^3 + ax^2 + b$
 - **a**, b : elements of GF(2) with b \neq 0.
- The advantage of these curves is that point multiplication algorithms can be devised.
- Frobenius map ϕ : E(GF(2^m)) \rightarrow E(GF(2^m))
 - $\phi: (\mathbf{x}, \mathbf{y}) \rightarrow (\mathbf{x}^2, \mathbf{y}^2)$
 - It is a group homomorphism of order m
 - It can be efficiently computed since squaring in GF(2^m) is relatively inexpensive.

Speeding Pollard's rho method for Koblitz curves

- Using the Frobenius map ϕ , the rho method for Koblitz curves can be sped up.
- The basic idea:
 - Define an equivalence relation:
 - **P** ~ Q \Leftrightarrow P = ± $\phi^{j}(Q)$ for some j.
 - [P] = the representative of the equivalence class.
 - {±P, $\pm \phi$ (P), $\pm \phi^2$ (P), ····} : equivalence class, # = 2m
 - Consider an iteration function f on E / ~
 - E/ ~ : the set of the representatives [P].

Expected #(iterations):

- 1/2•(π n/m)^{1/2} if f: random on E / ~
 - Speed up by $(2m)^{1/2}$
 - #(E/~) = n/(2m)

What is a suitable f on $E / \sim ?$

13

f on E/~

= the representative

A collision is

obtained on E/~.

 \rangle = the equivalence class

Our iteration function on E/~

■ We define an iteration function on E/~:

- $j = hash_m(L(P)), L : labeling function, 0 \leq s \leq m.$
- For s = 0, our iteration function is the same as that proposed by [GLV].

$$f_{s}(P) = \begin{cases} 2P & \text{if } j < s \\ P + \phi^{j}(P) & \text{otherwise} \end{cases}$$

Properties:

- It is a well-defined map on E/~.
- We can compute f_s with high speed as the parameter s becomes large.
 - A point doubling on elliptic curves is in general faster than a point addition.

[GLV] R. Gallant, R. Lambert and S. Vanstone, "Improving the Paralleized Pollard Lambda Search on Binary Anomalous Curves", Mathematics of Computation 69, pp. 1045-1062 (2000).

Performance of our iteraiton function on Koblitz curves (Experimental investigation)

Description of experiments

To analyze the performance of our iteration function, we attacked the ECDLP on Koblitz curves.

- Parallelized Pollard's rho method with 10 processors.
 - Distinguished points (collision detection)
- We attacked the ECDLP on Koblitz curves of relatively small parameters for 100 times with randomly chosen starting points.

■The parameters are ECC2K-41, 53, 83, 89. (Koblitz curves over GF(2^m) with m = 41, 53, 83, 89)

Our union environment for attacking the ECDLP

Experimental results

■ We summarize the performance of f_s with s=0, m/5, m/3, m/2.

Our iteration function f _s	s=0	s=m/5	s = m/3	s = m/2
ECC2K-41	1.06	1.14	1.29	1.17
ECC2K-53	1.10	0.96	1.12	1.26
ECC2K-83	1.03	0.99	1.25	1.16
ECC2K-89	1.01	1.20	1.08	1.29
Av. of iterations / Exp.	1.05	1.07	1.18	1.22

Table: Performance of our iteration function f_s.

Exp. = $1/2 (\pi n/m)^{1/2}$: the expected number of iterations before a collision is obtained.

Investigation:

- f_s with s = 0 is suitable for solving the ECDLP on Koblitz curves.
 - f_s with s= 0 has a performance almost same as the random function on E/~

Our results on the security of ECC

Our estimation of computating power required to break ECC (1)

- We estimate computing power required to break ECC in a year (FLOPS) using Pollard's rho method.
 - Review: the running time = #(iterations) × t(f)
 - t(f) : the computational speed of an iteration function f.

The method of our estimation:

 For #(iterations), we use our experimental results under our union environment.

In this talk, we only explain the performance on Koblitz curves.

- For t(f), we use the latest data:
 - ECCp : 1772cycle / iteration (224bit) [1]
 - ECC2 : 1047cycle / iteration (131bit) [2]

[1] Bernstein, "Curves25519 : new Diffie-Hellman speed records", PKC 2006.[2] Bailley, et al. "The Certicom Challenge ECC2-X", SHARCS 2009.

Our estimation of computating power required to break ECC (2)

Table: Computing power required to break ECC in a year using Pollard's rho method. (FLOPS, exponent of 10)

Our estimation of computing power required to break RSA (our previous work)

In the past, we evaluated the security of RSA cryptosystem by breaking RSA with our factoring devise.

Table: Computing power required to break RSA in a year using GNFS (FLOPS, exponent of 10)

Comparision of the security strength between ECC and RSA

RSA	ECCp	ECC2	ECC2K	Current breakable
696	106	105	110	security level !!
768	114	112	117	•RSA-768 solved (2010)
850	122	120	125	
1024	138	137	142	
1219	152	151	156	
1536	177	175	181	Our estimation:
2048	206	204	210	$\stackrel{\text{RSA-1024}}{=} \text{ECCp-138, ECC2-137,}$
2206	214	213	219	ECC2K-142
2832	245	244	250	
6281	371	370	376	
11393	497	496	503	

Conclusion

Conclusion

We extracted detail data for solving the ECDLP from experiments under our union environment.

- Parallelized Pollard's rho method with 10 processors
- We analyzed the performance of many iteration functions on elliptic curves
 - In this talk, we only explained the performance of our iteration function on Koblitz curves.
- We evaluated the security of ECC and compared the security strength between ECC and RSA.
 - The security balance between types of elliptic curves.
 - RSA-1024 ≒ ECCp-138, ECC2-137, ECC2K-142

■ cf. RSA-1024 ≒ ECC-160~223 (NIST SP800-57)

