
On the security evaluation of
elliptic curve cryptography

Masaya Yasuda
(FUJITSU LABORATORIES LTD.)

2010年6月11日（金） 15:15 - 15:45

「暗号理論の安全性を支える数論アルゴリズムとその応用」

グローバルCOEプログラム マス・フォア・インダストリ主催

九州大学 伊都キャンパス 数理学研究教育棟B1 大会議室111

2

Background （１）

� Elliptic Curve Cryptography (ECC)
� In 1985, N. Koblitz and V. Miller independently proposed using elliptic
curves to design public-key cryptographic schemes.
� Ex. elliptic curve-based signature, public-key encryption, etc…

� Advantages are the higher cryptographic strength per bit in
comparison with RSA and the higher speed in implementations.

� The security of ECC ≒ The hardness of the ECDLP
� ECDLP = Elliptic Curve Discrete Logarithm Problem

� This is somewhat mathematical problem.
� No efficient algorithm for the ECDLP is known except special cases.

� Special cases = supersingular case, anomalous case, etc…

3

Background （２）

� Experimental reports of solving the ECDLP
� Certicom ECC Challenge (1997~)

79
97

109

ECC2
(in bits)

95
108

130?

ECC2K
(in bits)

79
97

109

1997
1998
1999
2000
2001
2002
2003
2004
・・・

2010

ECCp
(in bits)

Year
Table: Status of the Certicom ECC Challenge

ECC2 = Elliptic curves over binary fields
ECC2K = Koblitz curves
ECCp = Elliptic curves over prime fields

10,000 PCs for 18months

2,600 PCs for 17months
In progress (October 2009 ~)
http://ecc-challenge.info/

※112-bit prime ECDLP solved (not in Certicom ECC Challenge) ← current record
200 PS3 for 6 months (January 2009 ~ July 2009)

4

Our motivation
� The problem of past experimental reports to evaluate the
security of ECC:
� Due to variance calculation by volunteers all over the world, detail
data for solving the ECDLP is uncertain.

� Past experiments were not implemented under an union environment.

We cannot evaluate the security of ECC accurately
from past experimental reports.

5

Our work
� Evaluate the security of ECC

� We extract detail data for solving the ECDLP from experiments under
an union environment.

� We evaluate the security strength balance between types of elliptic
curves.
� Types of elliptic curves: ECC2, ECC2K, ECCp.

� Compare the security strength between ECC and RSA
� Using our past data of the security of RSA

� In the past, we evaluated the security of RSA with our factoring device.

In the next page, we
explain our work in detail.

Our factoring
device

ECDLP and Attacks

7

ECDLP
� (The hardness of the ECDLP)

≒ (The security of ECC)
� ECDLP over GF(q):

� Given (E, q, n, S, T)
� Find the integer d with T = dS

� Remark
� For a large prime number n
(160bit), we cannot solve the
ECDLP in realistic time at present.

E/GF(q) : an elliptic curve

S : a point
of order n

T : an element
of 〈S〉

Find d with T = dS.

※We fix this notation.

8

Pollard’s rho method （１）

� The strongest known attack for the ECDLP (generic curves)
is Pollard’s rho method.

� The basic idea:
� Search for the two distinct pairs (ci, di), (cj, dj) with

ci・S + di・T = cj・S + dj・T
� Then we obtain the solution d with T = dS:

(ci – cj)・S = (dj – di)・T = (dj – di)・dS
d = (ci - cj)・(dj - di)-1 mod n

We explain the method to search
(ci, di), (cj, dj) in the next page.

9

Pollard’s rho method （２）

� Choose an iteration function f:
〈S〉→ 〈S〉
� It is easy compute a, b with f(X)
= a・S + b・T

� f : quasi-random
� For X = a・S + b・T, define Xi+1= f(Xi) with X0 = X.

� Then we can compute ci, di with Xi = ci・S + di・T
� Improvement:

� Parallel version
� Distinguished points

� It is a collision detection
technique a starting point

X0 = X = a・S + b・T

Xi = f(X0)

X2 = f(X1)

A collision Xi = Xj is obtained!!Then we have (ci, di), (cj, dj) withci・S + di・T = cj・S + dj・T

Xi = Xj

For any i, we have
Xi = ci・S + di・T

10

Remarks on Pollard’s rho method
� The running time = #(iterations before a collision is obtained)×t(f)

� t(f) = the running time of an iteration function f
� #(iterations before a collision is obtained) ～ (πn/2)1/2 if f : random

� It is heavily dependent on the choice of an iteration function f. (see below for example)

1.041.031.291.28Av. of iterations / (πn/2)1/2
fTM[16:4]fTA[20]fPGfPIteration functions

Table: Performance of iteration functions on elliptic curves over prime fields [Te]

fP : Pollard’s original iteration function
fPG : Pollard’s generalized iteration function
fTA[20] : Teske’s L-addiding walk with L =20
fTM[16:4] : Teske’s mixed-walk with 16 mult. and 4 sqr.

These iteration functions
are suitable for solving
the ECDLP.

How about on Koblitz curves?[Te] E. Teske, “On random walks for Pollard’s rho method”,
Math. Comp. 70 (2001).

Pollard’s rho method for the
ECDLP on Koblitz curves

12

Review on Koblitz curves
� Koblitz curves were first suggested for use in cryptography
by Koblitz.
� The defining equation E: y2 + xy = x3 + ax2 + b

� a, b : elements of GF(2) with b ≠ 0.
� The advantage of these curves is that point multiplication algorithms
can be devised.

� Frobenius map φ : E(GF(2m)) → E(GF(2m))
� φ: (x, y) → (x2, y2)

� It is a group homomorphism of order m
� It can be efficiently computed since squaring in GF(2m) is relatively
inexpensive.

13

Speeding Pollard’s rho method for
Koblitz curves
� Using the Frobenius map φ, the rho method for Koblitz
curves can be sped up.

� The basic idea:
� Define an equivalence relation:

� P ~ Q ⇔ P = ±φ
j(Q) for some j.

� [P] = the representative of the equivalence class.
� {±P, ±φ(P), ±φ

2(P), ・・・・} : equivalence class, # = 2m
� Consider an iteration function f on E / ~

� E/ ~ : the set of the representatives [P].
� Expected #(iterations):

� 1/2・(πn/m)1/2 if f: random on E / ~
� Speed up by (2m)1/2
� #(E/~) = n/(2m)

= the representative
= the equivalence class

f on E/~

A collision is
obtained on E/ ~.

What is a suitable f on E / ~ ?

14

Our iteration function on E/~
� We define an iteration function on E/~:

� j = hashm(L(P)), L : labeling function, 0 ≦ s ≦ m.
� For s = 0, our iteration function is the same as that proposed by [GLV].

� Properties:
� It is a well-defined map on E/~.
� We can compute fs with high speed as the parameter s becomes large.

� A point doubling on elliptic curves is in general faster than a point
addition.




+
<= otherwisePP
sjifPPf js)(

2)(φ

[GLV] R. Gallant, R. Lambert and S. Vanstone, “Improving the Paralleized Pollard Lambda Search on Binary
Anomalous Curves”, Mathematics of Computation 69, pp. 1045-1062 (2000).

Performance of our iteraiton
function on Koblitz curves
(Experimental investigation)

16

Description of experiments
� To analyze the performance of our iteration function, we
attacked the ECDLP on Koblitz curves.
� Parallelized Pollard’s rho method with 10 processors.

� Distinguished points (collision detection)
� We attacked the ECDLP on Koblitz curves of relatively small
parameters for 100 times with randomly chosen starting points.
�The parameters are ECC2K-
41, 53, 83, 89. (Koblitz curves
over GF(2m) with m = 41, 53,
83, 89)

Our union environment
for attacking the ECDLP

17

Experimental results
� We summarize the performance of fs with s=0, m/5, m/3, m/2.

1.17
1.26
1.16
1.29

1.29
1.12
1.25
1.08

1.14
0.96
0.99
1.20

1.06
1.10
1.03
1.01

ECC2K-41
ECC2K-53
ECC2K-83
ECC2K-89

1.05

s=0

1.07

s=m/5

1.18

s = m/3

1.22Av. of iterations / Exp.

s = m/2Our iteration function fs
Table: Performance of our iteration function fs.

Exp. = 1/2 (πn/m)1/2 : the expected number of iterations before a collision is obtained.

� Investigation:
� fs with s = 0 is suitable for solving the ECDLP on Koblitz curves.

� fs with s= 0 has a performance almost same as the random function on E/~

Our results on the
security of ECC

19

Our estimation of computating
power required to break ECC （１）
� We estimate computing power required to break ECC in a
year (FLOPS) using Pollard’s rho method.
� Review: the running time = #(iterations)×t(f)

� t(f) : the computational speed of an iteration function f.

� The method of our estimation:
� For #(iterations), we use our experimental results under our union
environment.
� In this talk, we only explain the performance on Koblitz curves.

� For t(f), we use the latest data:
� ECCp : 1772cycle / iteration (224bit) [1]
� ECC2 : 1047cycle / iteration (131bit) [2]

[1] Bernstein, “Curves25519 : new Diffie-Hellman speed records”, PKC 2006.
[2] Bailley, et al. “The Certicom Challenge ECC2-X”, SHARCS 2009.

20

0

5

10

15

20

25

30

35

40

64 80 96 110 126 142 158 174 190 206 222 238 254

ECCp

ECC2

ECC2K

Computing power required to
break ECC in a year (FLOPS)

ECC (in bits of key size)

Table: Computing power required to break ECC in a year
using Pollard’s rho method. (FLOPS, exponent of 10)

Our estimation of computating
power required to break ECC （２）

21

� In the past, we evaluated the security of RSA cryptosystem by breaking
RSA with our factoring devise.

768

1024

1536

2048

0

5

10

15

20

25

30

35

40

45

3
8
4

5
1
2

6
4
0

7
6
8

8
9
6

1
0
2
4

1
1
5
2

1
2
8
0

1
4
0
8

1
5
3
6

1
6
6
4

1
7
9
2

1
9
2
0

2
0
4
8

2
1
7
6

2
3
0
4

2
4
3
2

2
5
6
0

2
6
8
8

2
8
1
6

2
9
4
4

3
0
7
2

3
2
0
0

3
3
2
8

3
4
5
6

3
5
8
4

3
7
1
2

3
8
4
0

3
9
6
8

4
0
9
6

GNFS

CRYPTREC2006

Computing power required to
break RSA in a year (FLOPS)

RSA (in bits of key size)

Table: Computing power required to break RSA in a year
using GNFS (FLOPS, exponent of 10)

Our estimation of computing power
required to break RSA (our previous work)

22

Comparision of the security strength
between ECC and RSA

50349649711393
3763703716281
2502442452832
2192132142206
2102042062048
1811751771536
1561511521219
1421371381024
125120122850
117112114768
110105106696

ECC2KECC2ECCpRSA Current breakable
security level !!
・RSA-768 solved (2010)
・ECCp-112 solved (2009)

in bits of key size

Our estimation:
RSA-1024
≒ECCp-138, ECC2-137,
ECC2K-142

Conclusion

24

Conclusion
� We extracted detail data for solving the ECDLP from
experiments under our union environment.
� Parallelized Pollard’s rho method with 10 processors
� We analyzed the performance of many iteration functions on elliptic
curves
� In this talk, we only explained the performance of our iteration function on
Koblitz curves.

� We evaluated the security of ECC and compared the security
strength between ECC and RSA.
� The security balance between types of elliptic curves.
� RSA-1024 ≒ ECCp-138, ECC2-137, ECC2K-142

� cf. RSA-1024 ≒ ECC-160~223 (NIST SP800-57)

25 Copyright 2010 FUJITSU LIMITED25

