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Background （１）

� Elliptic Curve Cryptography (ECC)
� In 1985, N. Koblitz and V. Miller independently proposed using elliptic 
curves to design public-key cryptographic schemes.
� Ex. elliptic curve-based signature, public-key encryption, etc…

� Advantages are the higher cryptographic strength per bit in 
comparison with RSA and the higher speed in implementations.

� The security of ECC ≒ The hardness of the ECDLP
� ECDLP = Elliptic Curve Discrete Logarithm Problem

� This is somewhat mathematical problem.
� No efficient algorithm for the ECDLP is known except special cases.

� Special cases = supersingular case, anomalous case, etc…
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Background （２）

� Experimental reports of solving the ECDLP
� Certicom ECC Challenge (1997~)
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Table: Status of the Certicom ECC Challenge

ECC2 = Elliptic curves over binary fields
ECC2K = Koblitz curves
ECCp = Elliptic curves over prime fields

10,000 PCs for 18months

2,600 PCs for 17months
In progress (October 2009 ~) 
http://ecc-challenge.info/

※112-bit prime ECDLP solved (not in Certicom ECC Challenge) ← current record
200 PS3 for 6 months (January 2009 ~ July 2009)
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Our motivation
� The problem of past experimental reports to evaluate the 
security of ECC:
� Due to variance calculation by volunteers all over the world,  detail 
data for solving the ECDLP is uncertain.

� Past experiments were not implemented under an union environment.

We cannot evaluate the security of ECC accurately
from past experimental reports.
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Our work
� Evaluate the security of ECC

� We extract detail data for solving the ECDLP from experiments under 
an union environment. 

� We evaluate the security strength balance between types of elliptic 
curves.
� Types of elliptic curves: ECC2, ECC2K, ECCp.

� Compare the security strength between ECC and RSA 
� Using our past data of the security of RSA

� In the past, we evaluated the security of RSA with our factoring device.

In the next page, we 
explain our work in detail.

Our factoring 
device 



ECDLP and Attacks
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ECDLP
� (The hardness of the ECDLP) 

≒ (The security of ECC)
� ECDLP over GF(q):

� Given (E, q, n, S, T)
� Find the integer d with T = dS

� Remark
� For a large prime number n 
(160bit), we cannot solve the 
ECDLP in realistic time at present.

E/GF(q) : an elliptic curve

S : a point 
of order n

T : an element 
of 〈S〉

Find d with T = dS.

※We fix this notation.



8

Pollard’s rho method （１）

� The strongest known attack for the ECDLP (generic curves) 
is Pollard’s rho method.

� The basic idea:
� Search for the two distinct pairs (ci, di), (cj, dj) with

ci・S + di・T = cj・S + dj・T
� Then we obtain the solution d with T = dS:

(ci – cj)・S = (dj – di)・T = (dj – di)・dS
d = (ci - cj)・(dj - di)-1 mod n

We explain the method to search 
(ci, di), (cj, dj) in the next page.
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Pollard’s rho method （２）

� Choose an iteration function f: 
〈S〉→ 〈S〉
� It is easy compute a, b with f(X) 
= a・S + b・T

� f : quasi-random 
� For X = a・S + b・T, define Xi+1= f(Xi) with X0 = X.

� Then we can compute ci, di with Xi = ci・S + di・T
� Improvement:

� Parallel version
� Distinguished points

� It is a collision detection 
technique a starting point 

X0 = X = a・S + b・T

Xi = f(X0)

X2 = f(X1)

A collision Xi = Xj is obtained!!Then we have (ci, di), (cj, dj) withci・S + di・T = cj・S + dj・T

Xi = Xj

For any i, we have
Xi = ci・S + di・T
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Remarks on Pollard’s rho method
� The running time = #(iterations before a collision is obtained)×t(f)

� t(f) = the running time of an iteration function f
� #(iterations before a collision is obtained) ～ (πn/2)1/2 if f : random

� It is heavily dependent on the choice of an iteration function f. (see below for example)

1.041.031.291.28Av. of iterations / (πn/2)1/2
fTM[16:4]fTA[20]fPGfPIteration functions

Table: Performance of iteration functions on elliptic curves over prime fields [Te]

fP : Pollard’s original iteration function
fPG : Pollard’s generalized iteration function 
fTA[20] : Teske’s L-addiding walk with L =20
fTM[16:4] : Teske’s mixed-walk with 16 mult. and 4 sqr.

These iteration functions 
are suitable for solving 
the ECDLP.

How about on Koblitz curves?[Te] E. Teske, “On random walks for Pollard’s rho method”, 
Math. Comp. 70 (2001).



Pollard’s rho method for the 
ECDLP on Koblitz curves
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Review on Koblitz curves
� Koblitz curves were first suggested for use in cryptography 
by Koblitz.
� The defining equation E: y2 + xy = x3 + ax2 + b

� a, b : elements of GF(2) with b ≠ 0.
� The advantage of these curves is that point multiplication algorithms 
can be devised.

� Frobenius map φ : E(GF(2m)) → E(GF(2m))
� φ: (x, y) → (x2, y2)

� It is a group homomorphism of order m
� It can be efficiently computed since squaring in GF(2m) is relatively 
inexpensive.



13

Speeding Pollard’s rho method for 
Koblitz curves
� Using the Frobenius map φ, the rho method for Koblitz
curves can be sped up.

� The basic idea:
� Define an equivalence relation:

� P ~ Q ⇔ P = ±φ
j(Q) for some j.

� [P] = the representative of the equivalence class.
� {±P, ±φ(P), ±φ

2(P), ・・・・} : equivalence class, # = 2m  
� Consider an iteration function f on E / ~

� E/ ~ : the set of the representatives [P].
� Expected #(iterations):

� 1/2・(πn/m)1/2  if f: random on E / ~
� Speed up by (2m)1/2
� #(E/~) = n/(2m)

= the representative
= the equivalence class

f on E/~

A collision is 
obtained on E/ ~.

What is a suitable f on E / ~ ?
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Our iteration function on E/~
� We define an iteration function on E/~:

� j = hashm(L(P)), L : labeling function, 0 ≦ s ≦ m. 
� For s = 0, our iteration function is the same as that proposed by [GLV].

� Properties:
� It is a well-defined map on E/~.
� We can compute fs with high speed as the parameter s becomes large.

� A point doubling on elliptic curves is in general faster than a point 
addition.




+
<= otherwisePP
sjifPPf js )(

2)( φ

[GLV] R. Gallant, R. Lambert and S. Vanstone, “Improving the Paralleized Pollard Lambda Search on Binary 
Anomalous Curves”, Mathematics of Computation 69, pp. 1045-1062 (2000).



Performance of our iteraiton
function on Koblitz curves
(Experimental investigation)
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Description of experiments
� To analyze the performance of our iteration function, we 
attacked the ECDLP on Koblitz curves.
� Parallelized Pollard’s rho method with 10 processors.

� Distinguished points (collision detection)
� We attacked the ECDLP on Koblitz curves of relatively small 
parameters for 100 times with randomly chosen starting points.
�The parameters are ECC2K-
41, 53, 83, 89. (Koblitz curves 
over GF(2m) with m = 41, 53, 
83, 89)

Our union environment 
for attacking the ECDLP
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Experimental results
� We summarize the performance of fs with s=0, m/5, m/3, m/2.

1.17
1.26
1.16
1.29

1.29
1.12
1.25
1.08

1.14
0.96
0.99
1.20

1.06
1.10
1.03
1.01

ECC2K-41
ECC2K-53
ECC2K-83
ECC2K-89

1.05

s=0

1.07

s=m/5

1.18

s = m/3

1.22Av. of iterations / Exp.

s = m/2Our iteration function fs
Table: Performance of our iteration function fs.

Exp. = 1/2 (πn/m)1/2 : the expected number of iterations before a collision is obtained.

� Investigation:
� fs with s = 0 is suitable for solving the ECDLP on Koblitz curves. 

� fs with s= 0 has a performance almost same as the random function on E/~



Our results on the 
security of ECC
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Our estimation of computating
power required to break ECC （１）
� We estimate computing power required to break ECC in a 
year (FLOPS) using Pollard’s rho method.
� Review: the running time = #(iterations)×t(f)

� t(f)  : the computational speed of an iteration function f.

� The method of our estimation:
� For #(iterations), we use our experimental results under our union 
environment.
� In this talk, we only explain the performance on Koblitz curves.

� For t(f), we use the latest data:
� ECCp : 1772cycle / iteration (224bit) [1]
� ECC2 : 1047cycle / iteration (131bit) [2]

[1] Bernstein, “Curves25519 : new Diffie-Hellman speed records”, PKC 2006.
[2] Bailley, et al. “The Certicom Challenge ECC2-X”, SHARCS 2009.
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Our estimation of computating
power required to break ECC （２）
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� In the past, we evaluated the security of RSA cryptosystem by breaking 
RSA with our factoring devise.
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Comparision of the security strength 
between ECC and RSA

50349649711393
3763703716281
2502442452832
2192132142206
2102042062048
1811751771536
1561511521219
1421371381024
125120122850
117112114768
110105106696

ECC2KECC2ECCpRSA Current breakable 
security level !!
・RSA-768 solved (2010)
・ECCp-112 solved (2009)

in bits of key size 

Our estimation:
RSA-1024 
≒ECCp-138, ECC2-137, 
ECC2K-142



Conclusion
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Conclusion
� We extracted detail data for solving the ECDLP from 
experiments under our union environment. 
� Parallelized Pollard’s rho method with 10 processors
� We analyzed the performance of many iteration functions on elliptic  
curves 
� In this talk, we only explained the performance of our iteration function on 
Koblitz curves.

� We evaluated the security of ECC and compared the security 
strength between ECC and RSA.
� The security balance between types of elliptic curves.
� RSA-1024 ≒ ECCp-138, ECC2-137, ECC2K-142

� cf. RSA-1024 ≒ ECC-160~223 (NIST SP800-57)
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