Double-Length Hash Functions with Birthday PRO Security in the Ideal Cipher Model

Yusuke Naito Mitsubishi Electric Corporation

This talk was presented at SAC 2011

Hash Function

Hash functions are used as

→ Hash function: $\{0,1\}^* \rightarrow \{0,1\}^n$.

- Random Oracle instantiation
- ✦ HMAC
- Pseudorandom Function

÷...

Hash Security

Preimage Resistance given z, hard to find M s.t. z=H(M)

- Second Preimage Resistance given M, hard to find M' s.t. H(M)=H(M') and M≠M'
- ◆ Collision Resistance hard to find M, M' s.t. H(M)=H(M') and M≠M'

Pseudorandom Oracle (indiff. from RO): Our Goal Stronger property than CR, SPR and PR

Hash Function Design

Blockcipher-based hash and Permutation-based hash

Blockcipher-based Double-Length Hash Function (DLHF)

DLHF is constructed from an existing blockcipher (e.g., AES)

The output length of blockciphers is too short.

e.g., AES (output length: 128 bit)

$$\rightarrow \frown 128 \text{ bit} \qquad \qquad A \text{ collision of 128 bit hash} \\ is found with 2^{64} \text{ complexity}$$

DLHFs are designed so that the output length is twice of that of the blockcipher.

e.g., AES-based hash: the output length is 256 bit

Blockcipher-based Double-Length Hash Function (DLHF)

- Hirose's scheme, Tandem-DM, Abreast-DM, MJH, MDC-2,
- DLHFs are useful on size restricted devices (e.g., RFID, IC card) when implementing both a hash function and a blockcipher.

one has only to implement the blockcipher.

- DLHFs are designed from a single blockcipher.
- The security is proven in the ideal cipher model.

Example: Hirose's Hash

Constructed from a single blockcipher.

The Davies-Meyer mode is used twice in one block.

constant values

An adversary (or distinguisher) can access to
(ideal) encryption oracle E
→query: plain text x, key k
→response: cipher text y
(ideal) decryption oracle E⁻¹
→query: cipher text y, key k
→response: plain text x

Pseudorandom Oracle (PRO) or Indifferentiable from RO

 $H^{ε}$ is PRO if ∃S s.t. ∀D: $|Pr[D \Rightarrow 1 (left)] - Pr[D \Rightarrow 1 (right)]| ≤ ε$ (ε is a negl. function for the security parameter)

- (Left) D can make queries to H, E and E^{-1} .
- (Right) D can make queries to RO and S.
- S simulates E,E⁻¹ by using RO.
- PRO is the important security property
 - the security of many cryptosystems is preserved when RO is replaced with H^E (e.g., IND-CCA security, EUF-CMA security and many others)

Birthday Pseudorandom Oracle Security

The PRO advantage |Pr[D⇒1 (left)]-Pr[D⇒1 (right)]| is bounded by the birthday bound.

e.g.,

- When $H^{E}:\{0,1\}^{*} \rightarrow \{0,1\}^{2n}$ and D can make q queries, the birthday bound is $O(q^2/2^{2n})$.
- The query complexity to be differentiable from RO with probability of 1/2 is $O(2^n)$.

Previous Security Results (Ideal Cipher Model)

	Collision Resistance	Pseudorandom Oracle (PRO)
Dedicated Hash	0	birthday security beyond birthday security
Double-Length Hash (from a single practical size blockcipher)	0	A not achieve birthday security

Previous Results of Blockcipher-based DLHF

There is no double-length hash function constructed from a single practical size blockcipher and achieving birthday PRO-security

	Security		blockcipher		
	PRO	Collision Resistance	key size	output size	hash size
Hirose Tandem-DM Abreast-DM 	×	0	2n	n	2n
prefix-free Merkle-Damgård using PBGV	▲ O(2 ^{n/2})	0	2n	n	2n

The size is supported by AES-256

Our Result v.s. Previous Results

Our double-length hash functions can be constructed from a single practical size blockcipher and achieves the birthday PRO security!

	Security		blockcipher		
	PRO	Collision Resistance	key size	output size	hash size
Our Shemes	O(2 ⁿ)	0	2n	n	2n
Hirose Tandem-DM Abreast-DM 	×	0	2n	n	2n
prefix-free Merkle-Damgård using PBGV	▲ O(2 ^{n/2})	0	2n	n	2n

The size is supported by AES-256

Our Double-Length Hash Functions

Constructed from a single blockcipher such as AES-256

 $\xrightarrow{\bullet} 2n \text{ bit}$ $\rightarrow n \text{ bit}$

DLHF using Hirose's Scheme

post-processing function

 \rightarrow 2n bits \rightarrow n bits

Security Result

Theorem 3. There exists a simulator $S = (S_E, S_D)$ such that for any distinguisher \mathcal{D} making at most (q_H, q_E, q_D) queries to three oracles, the PRO advantage is

$$\epsilon \le \frac{2Q^2}{(2n-2Q)^2} + \frac{2Q}{2^n - 2Q} + \frac{4lqQ}{(2^n - Q)^2} + \frac{q_H + 2q}{2^n} + \frac{14Q}{2^n - Q}$$

where S works in time $\mathcal{O}(q + 2lqQ + 2lq)$ and makes 2q queries to RO where $Q = 2l(q_H + 1) + q_E + q_D$ and $q = q_E + q_D$.

The query complexity to be differentiable from RO with probability 1/2 is O(2ⁿ).

Our DLHFs achieve the birthday PRO-security!

Step 1

→ Step 1:

Compression functions of Hirose's scheme, Tandem-DM, and Abreast-DM are Preimage Aware (PrA) ⇒The following NMAC hash function is PRO

compression function (CF): Hirose, Tandem-DM, Abreast-DM

Step 1 (outline)

◆ The PrA security of Hirose, Tandem-DM, Abreast-DM= Collision Resistant (CR) + Preimage Resistant (PR) ↓ birthday security (O(2ⁿ)) beyond birthday security (O(2²ⁿ)) (Since the PrA notion is complex, the detail is skipped)

The following NMAC hash functions satisfy birthday PRO security (O(2ⁿ))

Step 2

Step 2 (intuition)

Since PPF: $rv1 \neq rv2$, if RO: $rv1 \neq rv2$, then PPF is RO \Rightarrow birthday PRO security (O(2ⁿ))

Result from Step 2

Step 3

Step 3 (intuition)

Since the output of E is almost (n-bit) random, the complexity that a random value is equal to c_1 or c_2 is O(2ⁿ)

Result from Step 3

Conclusion

First time DLHFs

- achieve birthday PRO security
- constructed from a single practical size blockcipher such as AES-256

Thank you for your attention!