

Mridul Nandi

Indian Statistical Institute, Kolkata.

Design of Hash functions

and
Some Attacks.

What is a
hash function?

(Cryptographic) Hash Function
It uses some atmoic operations, e.g. bit-wise rotation, xor,
shift, modular addition, multiplication, S-box etc.

H : M  {0,1}n. A public function (anybody can compute)

M is called message space, n is called the hash-size.

 Message space: {0,1}*, {0,1} , ({0,1}w)* where w is word-size.

 Hash size: n = 128, 160, 224, 256, 384, 512 etc.

264

What we demand from
a good hash function?

Hash Function
All cryptographic objects or building blocks have two
features (in general)

(1) correctness: what we want to achieve minimally (good or bad)?

(2) Security: What we achieve extra features from a good building
blocks to protect us from bad people?

Hash Function
All cryptographic objects or building blocks have two
features (in general)

(1) correctness: what we want to achieve minimally (good or bad)?

E.g. encryption should have inverse and both encryption and
decryption (inverse) should be efficiently computable. Similarly,
hash function should take an input of a specified message space
and gives an output of fixed specified length.

(2) Security: What we achieve extra features from a good building
blocks to protect us from bad people?

Hash Function
All cryptographic objects or building blocks have two
features (in general)

(1) correctness: what we want to achieve minimally (good or bad)?

E.g. encryption should have inverse and both encryption and
decryption (inverse) should be efficiently computable. Similarly,
hash function should take an input of a specified message space
and gives an output of fixed specified length.

(2) Security: What we achieve extra features from a good building
blocks to protect us from bad people?

In case of Encryption, given plaintexts and the
corresponding ciphertexts, the key should not be
revealed.

Similarly, we have (many) security goals from a good
cryptographic hash function. We will make a list later.

Examples of Hash
Functions?

Traditional hash: MD4, MD5 (Ron Rivest)
Widely used… Some weakness observed.

finally MD6 (again by Rivest and his team)

SHA-0, SHA-1, SHA-2 (SHA-224, SHA-256, SHA-
384, SHA-512) designed by the National Security
Agency (NSA) and published by the NIST.

Again some weakness in SHA-0 and even SHA-1 are observed.

SHA-3 competition called by NIST.
History of the SHA3-competition.

Current status: five finalists have been selected.

They are: Blake, Grostl , JH, Keccak, and Skein

In 2012, the winner will be announced.

For more information: SHA3-zoo, NIST web-page.

Examples of Hash Function

Some Applications of
Hash Function

1. Digital Signature : Let sigSK be a signature
algorithm over {0,1}n. We define SIGSK over M as

 -- SIGSK(M) = sigSK(H(M)).

Digital Signature
Algorithm sigSK

Value of Digital
Signature

Hash

1. Make message compatible
with signature algorithm.

2. Random looking hash output

3. Much faster algorithm

Application: Hash Function

1. Digital Signature : Let sigSK be a signature
algorithm over {0,1}n. We define SIGSK over M as

 -- SIGSK(M) = sigSK(H(M)).

Digital Signature
Algorithm sigSK

Value of Digital
Signature

Hash

Hash Function should be
Collision resistance:
Hard to find M ≠ M‟ such that
H(M) = H(M‟).

1. Make message compatible
with signature algorithm.

2. Random looking hash output

3. Much faster algorithm

Application: Hash Function

If H is not CR then what is the problem??

2. Bit-commitment: To commit a message M, make
c = H(M) public.

Hiding property: preimgae resistance: (given c, hard to
find M).

Binding property: hard to change the commitment i.e. to
find a message M‟ such that H(M‟) = c.

 - collision resistance, 2nd preimage resistant (given M
hard to find M ≠ M‟ such that H(M) = H(M‟)).

This works for long message. How one can commit
for a single bit b?

Application: Hash Function

2. Bit-commitment: To commit a message M, make
c = H(M) public.

Hiding property: preimgae resistance: (given c, hard to
find M).

Binding property: hard to change the commitment i.e. to
find a message M‟ such that H(M‟) = c.

 - collision resistance, 2nd preimage resistant (given M
hard to find M ≠ M‟ such that H(M) = H(M‟)).

This works for long message. How one can commit
for a single bit b?

Choose a long random string r and commit b||r instead of b.

One can append the random string for M also.

Application: Hash Function

Message authentication: E.g. HMAC (Bellare et al.)

Keyed hash function: (1) classical: H(K|| M), (2)
sandwich: H(K||M||K) etc.

 Public Key Encryption (Kurosawa-Desmedt, Cramer-
Shoup, DHIES etc.).

Identity based Public Key Encryption (Boneh et al.)
(public-key encryption with identity (e.g. gmail-id) as
a public key).

Application: Hash Function

Key extraction: Given a long key-stream (e.g.
biometric data) with less entropy how one can
compute a smaller key-size with full entropy.

A possible solution is to apply a good hash function to the

long key-stream.

Application: Hash Function

We have already heard some security
requirements, now

Can we make a list?

Security Requirements: Hash Function

(The MOST POPULAR)

(1) collision resistance.

(2) Preimage resistant.

The others

(3) 2nd preimage resistant

(4) multicollision resistant.

(5) Target collision resistant

 or UOWHF.

(6) resistant against length-extension attack

(7) Herding attack.

(8) indistinguishability in outputs. PRF, PRO..

ETC…

(The MOST POPULAR)

(1) collision resistance.

(2) Preimage resistant.

The others

(3) 2nd preimage resistant

(4) multicollision resistant.

(5) Target collision resistant

 or UOWHF.

(6) resistant against length-extension attack

(7) Herding attack.

(8) indistinguishability in outputs. PRF, PRO..

ETC…

Security Requirements: Hash Function

(The MOST POPULAR)

(1) collision resistance.

(2) Preimage resistant.

The others

(3) 2nd preimage resistant

(4) multicollision resistant.

(5) Target collision resistant

 or UOWHF.

(6) resistant against length-extension attack

(7) Herding attack.

(8) indistinguishability in outputs. PRF, PRO..

ETC…

SWISS ARMY KNIFE

Security Requirements: Hash Function

We have a long list of security
requirements, so let‟s begin with

collision resistant

 - Pad(M) = M || 10…00 || binary(|M|)64 = M1 || … || Mt

IV

M2 Mt-1 Mt …

hash value
= MDIV(M)

f f f f
n-bit n-bit n-bit

d-bit d-bit d-bit

M1

d-bit

n-bit n-bit

…

 Merkle-Damgård (Crypto-89)
Let f: {0,1}n+d

 {0,1}n be a compression function.

 - Pad(M) = M || 10…00 || binary(|M|)64 = M1 || … || Mt

IV

M2 Mt-1 Mt …

hash value
= MDIV(M)

f f f f
n-bit n-bit n-bit

d-bit d-bit d-bit

M1

d-bit

n-bit n-bit

…

f is CR F is CR. (Merkle,Damgård 1989).

Can we prove this?

 Merkle-Damgård (Crypto-89)
Let f: {0,1}n+d

 {0,1}n be a compression function.
Given a message M find smallest r ≥ 0 such that |M|+
65 + r is multiple of d. Append 10r || binary(|M|)64 .

Merkle-Damgård preserves CR (Proof)

IV

M2 Mt-1 Mt …

ht
f f f f

n-bit n-bit

d-bit d-bit d-bit

M1

d-bit

n-bit n-bit

…

IV

N2 Ns-1 Ns
…

h f f f f
n-bit n-bit

d-bit d-bit d-bit

N1

d-bit

n-bit n-bit

… hs

ht-1

h‟s-1

If |M| ≠ |N| then Mt ≠ Ns (both contain the length)
hence f(ht-1, Mt) = f(h‟s-1, Ns) is collision.

Merkle-Damgård preserves CR (Proof)

IV

M2 Mt-1 Mt …

ht
f f f f

n-bit n-bit

d-bit d-bit d-bit

M1

d-bit

n-bit n-bit

…

IV

N2 Nt-1 Nt …

h f f f f
n-bit n-bit

d-bit d-bit d-bit

N1

d-bit

n-bit n-bit

…

Mt = Nt
?

ht

ht-1

h‟t-1

ht-1 = h‟t-1
?

So assume |M| = |N|, i.e. s = t.

IV

M2 Mt-1 …

f f f
n-bit

d-bit d-bit

M1

d-bit

n-bit

…

IV

N2 Nt-1 …

f f f
n-bit

d-bit d-bit d-bit

N1

d-bit

n-bit

…

Mt = Nt

Mt-1 = Nt-1
?

ht-1

ht-1

ht-2 = h‟t-2
?

ht-2

h‟t-2

Merkle-Damgård preserves CR (Proof)

So assume |M| = |N|, i.e. s = t.

IV f
n-bit

M1

d-bit

n-bit

IV f

N1

d-bit

n-bit

Mt = Nt

Mt-1 = Nt-1

n-bit

Mt = Nt

Mt-1 = Nt-1

M1 = N1
?

h1

h1

Merkle-Damgård preserves CR (Proof)

So assume |M| = |N|, i.e. s = t.

IV f
n-bit

M1

d-bit

n-bit

IV f

N1

d-bit

n-bit

Mt = Nt

Mt-1 = Nt-1

n-bit

Mt = Nt

Mt-1 = Nt-1

M1 = N1

h1

h1

Merkle-Damgård preserves CR (Proof)

We have (M1, … , Mt) = (N1, …, Nt). This implies that M
= N (see the padding rule) and hence contradiction.

Keyed Merkle-Damgård („89)

a. Use key as an initial value: MDK(M).

b. Prepend key to the message block: MDIV(K||M)

K

M2 Mt-1 …

HV1 f f f
n-bit n-bit

d-bit d-bit d-bit

M1

d-bit

n-bit n-bit

…

H has length extension attack

K

M2 Mt-1 Mt …

HV2

= f(HV1, Mt)

f f f f
n-bit n-bit n-bit

d-bit d-bit d-bit

M1

d-bit

n-bit n-bit

…

H has length extension attack

• Hash based Password authentication is vulnerable to Length extension attack.

• Similar attack can be obtained for MDIV(K || M).

a. Use key as an initial value: MDK(M).

b. Prepend key to the message block: MDIV(K||M)

Keyed Merkle-Damgård („89)

MD is good and bad both…

Are there any other
examples?

MD is good and bad both…

Are there any other
examples?

YES

Designs of Hash Function
We design hash function from a smaller domain function
called base function (e.g. compression function).

E.g. Merkle-Damgård.

There are other variants of MD.

Chop-MD, MD with post-processor.

Haifa.

Concatenated MD.

Doubly iterated, Zipper hash, Generalized MD.

A sequential design based on non-compressing function

Sponge Hash function.

Now we study the above design of hash functions one
by one.

1. Chop-MD
Chop Construction (Coron et al. Crypto 2005)

 - any padding rule : for any M≠M‟, Pad(M) ≠ Pad(M‟).
 - chopping s bits of output.

 - i.e. the hash size is (n-s).

IV

M1 M2 M3 Mt-1 Mt … … …

ht
f f f f f

Theorem (Coron et al.)
If f is “Random Oracle” then F (chopping s-bits on
MD) has no length extension attack.

n-bit n-bit n-bit n-bit n-s bits

Chopping s bits

2. MD with Post Processor

g: {0,1}n  {0,1}m be any function, m  n , called

post-processor (chop is one example).

 - Pad(M) = M || 10…00 || binary(|M|)64 = M1 || … ||Mt

IV

M2 Mt-1 Mt …

f f f f
n-bit n-bit n-bit

d-bit d-bit d-bit

M1

d-bit

n-bit n-bit

… g
m-bit

H.V.

M1

IV1

IV2

M2 M3 M2

chop

Hash Value

P P P

P: {0,1} r+c
 {0,1} r+c be a function (permutation).

|IV1| = r (bit-rate or hash rate) and |IV2| =c

(capacity measure security guarantee).

Can be used for

Arbitrary length hash outputs.

stream-cipher.

Sponge Mode

In some application we need larger hash size.

How we can make
larger hash size?

3. Concatenated Hash function
In some application we need larger hash size.

One solution: Design a compression function with large n.

Double block length hash function: From n-bit compression
function how to design 2n-bit hash function.

 Range extension vs Domain Extension.

H and G n-bit hash function then H(M) || G(M) is a 2n-bit
hash function.

Widely used in many industries.

Common belief: If H and G are good hash functions and
independently designed then H || G has strength like an ideal 2n-
bit hash function. - NOT TRUE ALWAYS… (we will see later)

4. Generalized MD

1. Doubly iterated Merkle-Damgård Construction.

The sequence is <1,2,…, t, 1,2, …, t>

IV

Mt Mt …

hash value f f f
n-bit n-bit

d-bit d-bit

M1

d-bit

n-bit n-bit

…

M1
…

…

2. Zipper hash function.

The sequence is <1,2,…, t, t,t-1, …, 1>

Classical MD hash function can be characterized by a

sequence <1,2,…,t>.

IV

Mt M1 …

hash value f f f
n-bit n-bit

d-bit d-bit

M1

d-bit

n-bit n-bit

…

Mt
…

…

4. Generalized MD

 - Pad(M) = M || 10…00 || binary(|M|)64 = M1 || … || Mt

IV

Ma2 Ma Ma …

hash value f f f f
n-bit n-bit n-bit

d-bit d-bit d-bit

Ma1

d-bit

n-bit n-bit

…

s-1

Generalized MD (Nandi, Stinson IEEE‟07)

Generalization of MD (sequence-based): Given any

sequence a = <a1,…,as> of {1,2,..,t} we can define a

hash function Fa : {0,1}dt  {0,1}n as Fa(M) = hs

where

 h0 = IV, hi = f(hi-1, M[ai]), i = 1,…,s, M = M[1]|| … ||M[t],

s

5. HAIFA

IV

(1,M1)

…
ht

f f f f f

Compression function can take counter along with
message block and chaining value.

It protects from length extension attack (recall it
for MD) and long-message 2nd preimage attack (we
describe later).

n-bit n-bit n-bit n-bit

(2,M2) (3,M3) (t-1,Mt-1) (0,Mt) …

We know some hash designs ...

Which designs SHA-3
finalists use?

Blake: HAIFA MD design.
f(h, m, ctr) = h‟. We increase counter one by one in MD chain.

Salt can be incorporated.

Grostl: MD with non-trivial post processor .
Chain size: 2n. Post-processor: 2n  n.

JH: chop-MD
Chain size: 2n. chop: 2n  n.

Keccak: Sponge mode.

Skein: MD with post-processor.

SHA-3 Five finalists

We talked about a lot of designs. Let‟s
go back to security… rather

some generic attacks…

Fact : If z1, …, zq are chosen “randomly” (uniformly and
independently) from a set A with |A| = N then

 probability of collision (i.e. zi = zj) is roughly q2/N.

 N=365, q=23 then collision probability is more than ½. In

other words, it is more likely that among 23 person, two

share same birthday.

 If zi = f(xi), 1  i  q where xi is chosen randomly from X and

any f : X  A with |X| > |A| then collision probability is no

less than the birthday collision probability.

Birthday Attacks

Suppose H is a hash function with hash size n.

Collision Attack:

Choose M1,…, Mq at random and compute zi= H(Mi).

Find collision on zi‟s (i.e. Mi ≠ Mj but zi = zj).

On the average we expect at least one collision in 2n/2
tries.

Birthday Attcks

Suppose H is a hash function with hash size n.

Collision Attack:

Choose M1,…, Mq at random and compute zi= H(Mi).

Find collision on zi‟s (i.e. Mi ≠ Mj but zi = zj).

On the average we expect at least one collision in 2n/2
tries.

Preimage Attack: given z, choose M1,…, Mq at random until
we get z= H(Mi) for some i.

Birthday Attcks

Suppose H is a hash function with hash size n.

Collision Attack:

Choose M1,…, Mq at random and compute zi= H(Mi).

Find collision on zi‟s (i.e. Mi ≠ Mj but zi = zj).

On the average we expect at least one collision in 2n/2
tries.

Preimage Attack: given z, choose M1,…, Mq at random until
we get z= H(Mi) for some i.

2nd-Preimage Attack: given M first compute z = H(M)
then choose M1,…, Mq at random until we get z= H(Mi) for
some i and M ≠ Mi.

 Complexity of the birthday (2nd-) preimage attack?

 - 2n hash outputs are required to succeed.

Birthday Attcks

Generalization of collision : (distinct) x1,…, xk  X

are said to be k-multicollision tuple of f : X  {0,1}n

if

 f(x1) = … = f(xk).

Birthday attack: If f is RO then for any x1, …, xq

there is a k-multicollision of f with probability

O(qk/2n(k-1)). In other words, we need at least 2n(k-1)/k

queries to get a multicollision.

Multicollision

k=2, simply called
collision.

Commit h.

Given any M, find r such that H(M, r) = h

Finding r: a kind of preimage?

Not exactly, in case of MD (we will see later).

Generic attack: choose r at random until we find
H(M, r) = h. complexity: 2n.

Why it is called Nosterdamus attack?

Commit for future event and reveal once we reach that
future time point. - used for Prediction.

Nosterdamus Attack

Ideal Hash Function:

Random Oracle

An n-bit hash function H is called random oracle if for any
distinct inputs M1,.. Mq, H(M1), …, H(Mq) are uniformly and
independently distributed over {0,1}n.

Hash functions are usually assumed to be a random oracle.
For any distinct choices of x1, … , xq we have the birthday
collision probability.

Random oracle is ideal: For any attack (not necessarily
birthday attack)

Collision. query : 2n/2.

Preimage, Nosterdamus attack, second preimage- 2n.

k-multicollision 2n(k-1)/k queries

Random Oracle

Can we have attacks
better than generic

attacks ??

h1
IV = h0 h2

m1 m2

hk-1 hk

mk

n1 n2 nk

k successive birthday attacks.

H(M) = hk for any M = x1x2…xk where xi = mi or ni.

2k-multicollision based on k2n/2 queries.

h0

m1
h1 f(h0, m1) = h1

Notation :

Joux‟s Multicollision

What we will do if we do not get collision at some stage

after 2n/2 tries?.

We make sufficient number of queries.. Even if we do not

get we abort

step back or

change chaining value

What we will do if d < n/2 ?

We combine two or more blocks so that message size

in combined block is at least n/2.

Joux‟s Multicollision

Collision for concatenated DBL Hash H || G :

2n/2 –way multicollision for H in O(n2n/2) complexity.

Assume G as RO. We expect a collision pair (M, M‟)

for G. So,

 H(M) || G (M) = H(M‟) || G (M‟).

n2n/2 complexity for collision of 2n-bit hash function.

Open Problem : To find collision without assuming

ROM.

Application: Joux‟s Multicollision

Find 2nd preimage of long messages (2k blocks).

Query complexity: 2n-k + k 2n/2.

Pre-processing step: We can use the idea of

Joux‟s attack to find expandable messages.

Step-1: Find a link message to the chain of

the given message M.

Step-2: Use appropriate length message from

the expandable message set.

Application: Joux‟s Multicollision

M1

IV1

IV2

M2 M3 Mk

chop

Hash Value

P P P

We have multicollision similar to MD.

Can you see this?

Preimage attack: Meet-in-the middle attack (given

M and EK2(EK1(M)) = C, how to find K1 and K2 ?) .

Here given h, find M:

2c/2 queries to find a preimage.

Sponge Mode

. . .

Commit h.

Given any M find r such that H(M, r) = h

We have Diamond attack.

roughly 2 n-k + 2k/2 +n/2 hash queries.

Nosterdamus Attack for MD

online offline

Nosterdamus Attack for MD

 preprocessing step
 (2n/2 + k/2 queries are required):
 Make the tree to obtain H (root node) and commit it.

 Given M compute the partial chain value h: IV M h.

 Find a link Mlink s.t. h  MlinkHi for some i (here i = 2).
 2n-k queries are required

 Let Hi  N H . Then we have, IV  M || Mlink || N H
 i.e. MD(M || Mlink || N) = H. So r = Mlink || N.

Elongated Diamond Structure

Grostl Compression function

Grostl post-processor

Length-Extension Attack

Comments and Questions ?

Thank you

Security Requirements: Hash Function

SWISS ARMY KNIFE

(The MOST POPULAR)

(1) collision resistance.

(2) Preimage resistant.

The others

(3) 2nd preimage resistant

(4) multicollision resistant.

(5) Target collision resistant

 or UOWHF.

(6) resistant against length-extension attack

(7) Herding attack.

(8) indistinguishability in outputs. PRF, PRO..

ETC…

Some compression functions…

MD4 compression function f: {0,1}128 x {0,1}512  {0,1}128.
F(h, m) = h‟

message expansion M1 || … M16|| M1 || .. M16 || M1 || … || M16.

h = A || B || C || D. Update h 48 times as shown in figure.

MD4 compression function

SHA-1 compression function

SHA-2 compression function

