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Introduction

MQ (multivariate quadratic) problem.

Let n,m ≥ 1 be integers and f1, · · · , fm quadratic forms of

x = (x1, · · · , xn).

MQ problem is the problem to find x = (x1, · · · , xn) such

that f1(x) = 0, · · · , fm(x) = 0 for given f1, · · · , fm.

This problem over finite fields is used to cryptography.

(ex. Matsumoto-Imai, HFE, UOV, STS, TTM etc).

Known: MQ prob. is NP-hard.

(Secure against quantum attacks?)



However, not all quadratic equations are difficult to be

solved (some MQ cryptosystems were already broken).

Q. Which equations are weak?

How to characterize its weakness?

Kipnis-Patarin-Goubin[Eurocrypt’99] found that if

n ≥ m2 + m then the equations can be solved

(i) in polynomial time for even char. field,

(ii) with 2m × (polyn.) complexity for odd char. field.

Q. Is the condition between n and m improved?



Main results.

1. When n ≥ (about)m2 − 2m3/2 + 2m,

the equations can be solved in polynomial time

(both for even and odd char. fields).

2. When n ≥ 1
2m(m + 1) + 1,

the equation can be solved

with O(2m) complexity for even char. cases,

and with O(3m) complexity for odd char. cases.



Notations.

q: a prime power,

k: a finite field of order q,

m,n ≥ 1: integers,

x = (x1, · · · , xn)t ∈ kn: variables,

f1(x), · · · , fm(x) ∈ k：quadratic forms of x，

Fi: n× n matrix such that fi(x) = xtFix + (linear).

(e.g. If fi(x) = x2
1 + 4x1x2 + 3x2

2 + x1 + 2x2 + 1

then Fi =
(

1 2
2 3

)
)



Kipnis-Patarin-Goubin’s method

1. Take linear transforms m− 1 times such that,
for 1 ≤ i ≤ m,
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Finding such transforms requires to solve at most

m(m− 1) linear equations with n variables.



Then we have

fi(x) 7→
m∑

j=1

αijx
2
j +

m∑

j=1

xj((xm+1, · · · , xn)-linear)

+ ((xm+1, · · · , xn)-quadratic).

2. Substitute values into xm+1, · · · , xn such that

fi(x) 7→ ∑m
j=1 αijx

2
j + β.

This requires to solve m2 linear equations with n−m

variables (thus n ≥ m(m + 1)).



3. The problem to solve

f1(x) = 0, · · · , fm(x) = 0

is reduced to the problem to solve

x2
1 = γ1, · · · , x2

m = γm.

This can be solved

(i) in polynomial time when q is even,

(ii) with 2m × polyn.-complexity when q is odd.



When n ≥(about)m2 − 2m3/2 + 2m

Additional notations.

For x = (x1, · · · , xn)t,

x̃ := (x0, x1, · · · , xn)t,

For f1(x), · · · , fm(x),
f̃1(x̃), · · · , f̃m(x̃): homogeneous quadratic forms such that

f̃i(1, x1, · · · , xn) = fi(x1, · · · , xn),

(e.g. If f(x1) = 3 + 2x1 + x2
1,

then f̃(x0, x1) = 3x0
2 + 2x0x1 + x2

1),

F̃i: (n + 1)× (n + 1) matrix such that f̃i(x̃) = x̃tF̃ix̃.



Elementary fact.

Let U = (uij)0≤i,j≤n be an invertible (n + 1)× (n + 1)
matrix. If U satisfies that u00 6= 0 and

U tF̃iU =
(

01×1 ∗
∗ ∗

)

for 1 ≤ i ≤ m, then x = (u−1
00 u01, · · · , u−1

00 u0n) is a

solution of f1(x) = 0, · · · , fm(x) = 0.

We will find such U instead of solving the equations.



Algorithm A.

Let G be a square matrix. Then one can find an invertible

matrix U such that

U tGU =




0 · · · 0 ∗
... . .

.
. .

. ...

0 . .
. ...

∗ · · · · · · ∗




in polynomial time.

How to do? A variant of triangulation.



Algorithm B.

Suppose that n > m2 and F1, · · · , Fm are n× n square

matrices. Then one can find an invertible U such that

U tFiU =
(

0m×m ∗
∗ ∗

)

for 1 ≤ i ≤ m in polynomial time.



Step 1. Find U1 such that

U t
1F1U1 =

(
0m×m ∗
∗ ∗

)
.

Step 2. We “want to” find U2 such that

U t
2F1U2, U

t
2F2U2 =

(
0m×m ∗
∗ ∗

)
.

Step 3. We “want to” find U3 such that

U t
3F1U3, U

t
3F2U3, U

t
3F3U3 =

(
0m×m ∗
∗ ∗

)
.

...



Assume that, until Step N − 1, we can find UN−1 such that

U t
N−1FiUN−1 =

(
0m×m ∗
∗ ∗

)

for 1 ≤ i ≤ N − 1.



Step N .

N-0. Find m×m matrix VN such that

(
V t

N

I

)
FN

(
VN

I

)
=




0 · · · 0 ∗
... . .

.
. .

. ...

0 . .
. ...

∗ · · · · · · ∗

∗

∗ ∗




by Alg. A. Note that

F1, · · · , FN−1 7→
(

0m×m ∗
∗ ∗

)
.



N – 1. Choose a linear transform xm 7→ a1x1 + · · ·+ anxn

such that

F1, . . . , FN−1 7→
(

0m×m ∗
∗ ∗

)
,

FN 7→




0 · · · · · · 0 0
... . .

. ∗ ∗
... . .

.
. .

.
. .

. ...

0 ∗ . .
. ...

0 ∗ · · · · · · ∗

∗

∗ ∗




.



This requires to solve

(1) (N − 1)× (m− 1) linear equations of (xm+1, . . . , xn),

(2) a linear equation of (xm, . . . , xn),

(3) N − 1 quadratic equations of (x1, . . . , xn), given by

m∑

i=1

xi((xm+1, . . . , xn)-linear)

+ ((xm+1, . . . , xn)-quadratic) = 0

Thus this can be solved by the linear operations.



...

Repeating such computations, we can find an invertible

linear transform U such that

U tFiU =
(

0m×m ∗
∗ ∗

)

for 1 ≤ i ≤ min(n/m,m) in polynomial time.

Thus this works when n > m2.



Solving quadratic equations.

N0 = n + 1.

Step 1. Choose M1 <
√

N0 and put N1 := bN0/M1c.
Find N0 ×N0 matrix U1 such that

U t
1F̃iU1 =

(
0N1×N1 ∗
∗ ∗

)

for 1 ≤ i ≤ M1.



Step 2. Choose M2 <
√

N1 and put N2 = [N1/M2].
Find N1 ×N1 matrix U2 such that

(
U t

2

I

)
F̃i

(
U2

I

)
=

(
0N2×N2 ∗
∗ ∗

)

for M1 + 1 ≤ i ≤ M1 + M2.

...

Repeat such operations and stop when Mt = 1.

Then we can find U = (uij)0≤i,j≤n such that

U tF̃iU =
(

01×1 ∗
∗ ∗

)

for 1 ≤ i ≤ M1 + M2 + · · ·+ Mt.



Thus we can solve equations in polynomial time when

m ≤ M1 + M2 + · · · ∼ n1/2 + n1/4 + · · · ,

namely

n ≥ (about)m2 − 2m3/2 + 2m.

Kipnis-Patarin-Goubin: n ≥ m2 + m.

m · · · 14 15 16 17 18 19 · · ·
n for Alg. 1 · · · 100 121 144 156 169 196 · · ·
n for [KPG] · · · 210 240 272 306 342 380 · · ·



When n ≥ 1
2m(m + 1) + 1.

Step 1. Find a linear transform

x0 7→ a0x0 + a1x1 + · · ·+ anxn such that

F̃1 7→
(

01×1 ∗
∗ ∗

)
.

This requires to solve one quadratic equation.

It should be n ≥ 2.



Step 2. Find a linear transform

x1 7→ a0x0 + a1x1 + · · ·+ anxn such that

F̃1 7→
0
@

0 0
0 0

∗
∗ ∗

1
A , F̃2 7→

0
@

∗ 0
0 ∗ ∗
∗ ∗

1
A .

This requires to solve 2 linear eq. and one quadratic eq.

Then it must be n ≥ 4.

Next, find a transform x0 7→ a1x0 + a2x1 such that

F̃2 7→



0 ∗
∗ ∗ ∗
∗ ∗


 .

Step 1 and 2 solve 2 quadratic equations with more than 4
variables.



Step 3. Find x1 7→ a0x0 + a1x1 + · · ·+ anxn such that

F̃1, F̃2 7→
0
@

0 0
0 0

∗
∗ ∗

1
A , F̃3 7→

0
@

∗ 0
0 ∗ ∗
∗ ∗

1
A .

This requires to solve 3 linear eq. and 2 quadratic eq.

Then it must be n ≥ 7.

Next, find x0 7→ a1x0 + a2x1 such that

F̃3 7→



0 ∗
∗ ∗ ∗
∗ ∗


 .

Step 1 - 3 solve 3 quadratic eq with more than 7 variables.



...

Repeat such operations.

We see that the quadratic equations can be solved when

n ≥ 1
2m(m + 1) + 1.

However, the computational task is roughly estimated by

O(2m) when q is even,

and O(3m) when q is odd.



Application: Analysis of UOV.

UOV [Patarin(1998), Kipnis-Patarin-Goubin(1999)]:

One of MQ signature schemes.

The signature is generated by linear operations.

If qn−2m is small, UOV is broken.

Suggested parameter by KPG (2003):

q = 24, m = 16, n = 48 or 64.



Our attack. Apply the first algorithm directly.

This solves 9 equations for 48 variables,

and 11 equations for 64 variables.

Inserte exhausitive searches for the remaining 7 or 5
equations.

n = 48, q4
(
ω(49) + q2 (ω(7) + qω(3))

) ∼ 236.4,

n = 64, q
(
ω(65) + q3 (ω(8) + qω(3))

) ∼ 226.4,

where ω(n) ∼ n(n−m)3/3 is the complexity for Alg. B.



Comparison to past attacks.

(q, m, n) (24, 16, 48) (24, 16, 64)

exhaustive 264 264

Courtois et al (PKC’02) 246 242

Faugére-Perret(SCC’08) 240.5 240.5

Our attack 236.4 226.4



Conclusion
We found algorithms to solve multivariate quadratic

equations

1. in polynomial time when n ≥ (about) m2− 2m3/2 +2m,

and

2. with O(2m) or O(3m) complexities when

n ≥ 1
2m(m + 1) + 1.

Open problem.

How can one reduce the lower bound of n solving m

equations effectively?


