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SA

n = pq.
ed=1mod (p—1)(qg—1).
Public key: n, e.

Secret key: p,q,d.

n = pq.
ed=1mod (p—1)(qg—1).

Encryption: ¢ = m® mod n.
Decryption: m = ¢ mod n.

Factoring n = pg = Deciphering RSA.

There are several sub-exponential time algorithms.



Analysis with special contions

1. If the higher (or lower) half bits of p are known, RSA is

broken in polynomial time
(Coppersmith, 1997, Boneh-Durfee-Frankel, 1998).

2. If d (secret key) is small enough, RSA is broken in
polynomial time (d < n"#°, Wiener, 1990;
d < nY292 Boneh-Durfee, 2000).

3. Others, e.g. when higher (or lower) bits of d is known,
etc.



Sarkar-Maitra-Sarkar’s attack (2008)

The attack when
(not more than half) higher bits of p are known,
and d is small enough (but d > n49%),

Known: p1 s.t. [p—p1| <n® (0 < a<1/2).

d~ no.

|f
b <1—+/a,

then (p, ¢, d) will be found in polynomial time.
(If o =1/2,then § <1—1/v/2=10.292---).



Main result

It

0 <

(a + g — \/<2a -~ %) (10 + 17)) , (a0 <29/62),

(5—204—\/(5—200(604—1)) , (a0 >29/62),

SN

then (p, ¢, d) will be found in polynomial time.
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Outline of attacks using LLL

1. Describe the problem by polynomial equations.
2. Generate a /lattice by the coeff. of the polynomials.
3. Find small vectors in the lattice.

4. Solve the equations derived from the small vectors.



Q. Why are small vectores required?

A. Equations/(Z/N7Z) will be equations/Z.
(eg. z°=8mod N = z =7)

Howgrave-Graham’s lemma.

h(x1,--- ,xy): a polynomial with w monomials.
m, N, (x7,---,x), (X1, -+, Xn): integers such that
1. 2} < Xq,--- 2 < X,

2. h(z}, - ,x2/ ) =0mod N™,
3. Hh(ﬂ?le, ,QZan>H < Nm/\/ﬁ
Then h(x}, -,z ) = 0 holds over Z.



Q. How to get small vectors?
A. Using the LLL algorithm.
LLL algorithm (Lenstra-Lenstra-Lovasz, 1982)

ny > ng > 1.
Ui, -+ ,Up, € R™: linearly independent vectors.
L: the lattice generated by {uq, -+ ,up, }.

det(L): the volume of the unit lattice.
The vectors with the following norms will be found in
polynomial time.

’I’L2—1

bl <27 (det L) Iba] < 2% (det L)



Aim.
1. Generate “good” polynomials and a lattice.

2. Estimate the size of unknowns with

’I’L2—1

2™ (det L)™2 < N™/\/aw.

Tools.

1. n =pq.
2. ed+kn—p—q+1)=1.



Basic Polynomial

1. For Boneh-Durfee's 6 < 0.292- ...

fle,y) =2z(n+1-y)—1.

(x,y) = (k,p+ q) is a solution of f(x,y) =0 mod e.



2. For Sarkar-Maitra-Sarkar’s 6 <1 — /a.
p2i=p—p1,4:=q—q <n”.

flz,y) =z(n+1-p1—q —y) — 1.

(x,y) = (k,p2 + q2) is a solution of f(x,y) = 0 mod e.



3. Our version.

a,b~n7: q—l—é < ne1/2

P a
A :=agz +bpz — [a(n —p1g1)/p1] ~n

20—1 /24~

k(ain—p1 —q1+1) —aps —agqe) — a = 0 mod ae.
k(A+ (b—a)ps + M) —a=0mod ae.

flz,y,2) =x(z—(a—b)y+ M) —a=0mod ae
OO000x =k, y=mpa z=A.



B0y (0,y,2) = (ae)™ ez f!(w,y, 2)

1 m—1 .1 '
i@y, 2) = (ae)™latyzd f(z,y, ).
OO oo,

<(O§l§m,0§i§m—l,j:0,
\Oglgm,i:(),lgjgt.

O0n =pg = bp3 = p2A + Mips + p1A + My
IO0O0FO0yO00O0O00 1.
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LLLOOOOOOOOHGslemmaOO0OOOOOOOOO
Jooooobooon

nl—l

271 (det L)Y™2 < (ae)™/v/w,
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t: J(00o0ouo0 -oo/dooodad
Joobbbobobtouddddyydn

1

5 < —2¢/(2a — 1/2 +9)(1 + 8oz+47)>, (8a + 3y < 3),

1+7— V(1 +7) 2 —1/2+7), (8av+ 3y > 3).

(«=1/2,v=000006<0.292..0000000000).
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(ii-2) Our cases.
The “geometrically progressive matrix” is not (directly)
used, since the structure of the lattice is different.

Taking eliminations carefully, we see that, if
ti—10<tio<ti—11+1l, t_11<t1<1%_-10,
then F"s are given by the linear combinations of

{xil yi2 : rh yiQZ(il > 19),

v (zy + a)', v/ z(zy + b)' (5 > 1)}



The condition
10 <tio<ti—11+1,t1-11 <81 <7%-10;

{tio} ={0,1,1,2,2,3,-- },
{t;1}={0,0,1,1,2,2,---} : good.
{tio} ={0,0,1,1,1,2,--- },
{t;1} ={0,0,0,1,1,1,---} : good.
{tio} ={0,1,2,3,4,5, -},

{t;1} ={0,0,1,2,3,4,---} : bad.




In such “good” cases, the lattice L is given by
This gives our bound
with

t1,0,t1,1 ~



Special cases: p: g ~ a : b with small a, b.

If a,b with

a 1
b < nl/2—a

‘e Nhe

are smaller, larger d can be recovered.

Especially, a,b are too small, e.g. (1,1),(3,2),(4,5), etc,
the upper bound is given by



Wegar(2001). If [p — gq| < n® and
0 <

then p, q,d can be recovered in polynomial time.

This is just the case of (a,b) = (1,1) and the bound is
almost same.

Our approach is also used to other cases.



Conclusion.
We improve the (theoretical) upper bound of the small
secret key attack when the upper bits of p is known.

The size of the lattice of our lattice is about twice of
SMS's lattice for the same m.

If p/q is approximated by a/b with small a,b, the upper
bound is larger.



