The Design of Convenient File Protection based on EXT3 File
System

Ji-Ho Chof Dong-Hoon Yoot

Hyung-Chan Kimf

R.S.Ramakrishnaf

Kouichi Sakuraif

tDepartment of Information and Communications,
Gwangju Institute of Science and Technology,
1 Oryong-dong, Buk-gu
Gwangju 500-712, Rep. of Korea

jhcho@gist.ac.kr
tFaculty of Computer Science and Communication Engineering
Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka
Fukuoka 812-8581, Japan

sakurai@csce.kyushu-u.ac. jp

Abstract In this paper we present a secure file system for trusted operating systems (TOS). The
proposed file system can protect data of a TOS from theft by encrypting them even though the
given access control in TOS is exploited. We concentrate on balancing security and convenience
with minimizing performance overheads. For security and convenience, the file system supports
UNIX group sharing, meta-data protection, and transparency to users and application programs.
In the aspect of performance, we minimize the overheads by implementing the proposed method
on a native extd file system in a Linux operating system. Our experimental result shows that
the proposed system is about 5 times faster than existing secure file system.

1 Introduction

Recent security systems reveal their limitations
according as the methods of attacks have been
diversified and elaborated. Trusted operating
systems, in short TOS, are beginning to at-
tract attentions as a promising ways to solve
these limitations. A TOS is equipted with the
basic security services and mechanisms to pro-
tect, distinguish and separate clssified data in
a computer system.

Most researches of TOS are focused on en-
hancing access control mechanism. The pur-
pose of access control is to limit the operations
that a legitimate user of a computer system
can perform. Access control constrains what
a user can do directly, as well what programs
executing on behalf of the users are allowed to
do[1].

However, sometimes, access control can not
assure the confidentiality and the integrity of

files when the system is stolen or an attacker
bypass the access control system. Also when
an attacker acquires the privilege of system ad-
ministrator or a system administrator abuses
of his or her privilege, the access control can
not preserve the security of the files.

Secure file systems are designed to solve
these problems. A Secure file system protects
files by encrypting them. However, the en-
cryption at the a level is very cumbersome be-
cause the user of the system has to manage
whole process of encryption, decryption and
key management. Therefore, file system that
manages the cryptographic process at the ker-
nel level is more attractive.

There have been several approaches to de-
sign secure file systems|2, 3, 4]. However, the
existing methods cause heavy performance over-
heads in addition to inconvenience for users.
To overcome these problems, we propose a se-

cure file system that provides not only security
for preserving privacy, but also convenience
for user. Minimizing the overheads of perfor-
mance is another goal of our proposed system.

The rest of this paper is organized as fol-
lows. Section 2 surveys previous and related
works. Section 3 describes the design of our
system. Section 4 discuss the operation of this
system. We discuss current implementation
state in Section 5. Section 6 shows evaluation
of our prototype. Finally we conclude in Sec-
tion 7.

2 Related Works

2.1 Cryptographic File System(CFS)

CFS based on NFS has been developed by
Matt Blaze of AT&T Bell Lab [2]. It was im-
plemented at a user-mode NFS server. User
of this system has to create a directory at the
local or remote file system to store encrypted
file. CFS daemon is executed in a user mode.
To access encrypted data, user should use a
attach command. The critical disadvantage
of CFS is performance loss caused by too fre-
quently occurring context switches and data
exchanges between kernel and user processes.
In addition, it is hard to provide transparency
to users and to deal with key management
since the key should be managed by each in-
dividual user for each encrypted directory.

2.2 Tramsparent Cryptographic File
System (TCF'S)

TCFS is was developed in order to make up
for CFS’s defects[3]. Thus, it implanted at a
kernel-mode NFS client. TCFS provides trans-
parency to users without using attach and de-
tach command. It is possible to encrypt each
file and directory.

Database is used to store user keys and
group keys. It is main problem of TCFS. The
stored key is very vulnerable to attacks. In
addition, applying TCFS for trusted operat-
ing system is unreasonalbe since it was devel-
oped for distribed enviroment. Therfore, if we
use TCFS as a standalone system, its perfor-
mance is unacceptable. Finally, TCFS is avail-

able only on system with Linux kernel version
2.2.27 or earlier.

2.3 NCryptfs

NCryptfs is a secure file system created to pro-
vide convenience and high performance [4][5].
NCryptfs is stacked on top of an existing file
system. Calls accessing this directory through
the NCryptfs mount are intercepted by the
NCryptfs daemon. The daemon then accesses
the file system and retrieves the file. NCryptfs
will then decrypt the file based on a key sup-
plied by the user. This key is stored in pinned
memory and when the user access a file, NCryp
tfs authorizes the user by getting a password.
Like many system, this makes the security pro-
vided only as strong as the user password.

NCryptfs allows the user to use attach-
ments. NCryptfs uses attachments in the same
way as CFS. The use of attach facilitates shar-
ing files, because a user could share an at-
tachment with a group of users who all know
the key. NCryptfs also supports UNIX groups.
NCryptfs uses a cipher that will take an arbi-
trary sized buffer and encrypts it to a set size.
NCryptfs also stores files in the file systems
with hashes on their actual names to prevent
analysis attacks.

The one piece of information that is not
protected by NCryptfs is the directory struc-
ture, which is kept as is. Also it is still inconve-
nient because we have to use attach command
to access encrypted files.

3 Design

3.1 Basic Ideas

Our design for the secure file system focuses on
three main goals: the preservation of privacy,
easiness in usage, and minimization of perfor-
mance overhead. In sense of privacy, our sys-
tem aims to protect data of the system from
theft . Also it has to be safe from crackers
bypassing access controls and system admin-
istrators abusing their privileges. To achieve
this goal, when the system writes a file we en-
crypt it then store it on a disk. In case of

reading the file, we decrypt it then pass it to
an application program.

Even though the file encryption provides
safe environment to users, a few people use
these kinds of systems since they are very cum-
bersome to use. In file encryption at applica-
tion level, users should have reponsibility for
setting configurations of key management, en-
cryption and decryption.

Our system provides transparency to users
and application programs by inserting encryp-
tion and decryption routines into at kernel level.
In this system, only an administrator has re-
sponsibility for setting the configurations and
users do not need to consider it. In addition,
we improve the convenience by just using a
session command instead of using attach and
detach commands. Almost all cryptographic
file system could not provide file sharing. On
the other hand, our system provides file shar-
ing to group members to be consistent with
UNIX group sharing.

As depicted in section 1, CFS was imple-
mented in user mode[2]. TCFS was imple-
mented by using RPC because it has to sup-
port distribued environment|[3]. Therefore, both
two systems have a problem in the aspect of
performance. To achieve better performance,
we minimize overheads by implementing the
proposed method on a native ext3 file system
in a Linux operating system.

3.2 Key Management

Our system uses symmetric key cryptographic
algorithms such as DES, AES, Blowfish, and
so on. Each user has his or her own key. When
users access the encrypted file, user should open
session for establishing key then system promp
ts the key from users. At this time,the key is
not stored on disk, but saved on main memory.
When the session is closed, key is destroyed
from the memory. If user leaves his or her
seat without closing the session or user do not
use the computer for quite long time, session
is automatically closed by timeout.

3.3 File Sharing

Our proposed system basically provides Linux
group sharing. One different point is session
concept. Only when the session of the owner
of file is opened, the same group members of
that file are allowed for access encrypted files.
In other words, only when an owner of file’s
key is set on main memory and the group of
owner and the group of the user that wants
to access owner’s file are the same, encrypted
file is decrypted successfully. For these mech-
anisms, we use permission bits of inode.

4 Operation Scenarios

In this section, we present two operation sce-
narios in using our proposed scheme. One is
when an owner uses his or her own file and the
other is when a user who may or may not in

same group with the file owner uses the given
files.

4.1 Case 1: An owner

As depicted in Figure 1, if a user wants to
access an encrypted file, the user is required
to open the session for the establishment of
key. User would open the session then system
is inputted the key by user. Next, it stores
that key on memory. After key is established
by user, in case of reading the files, encrypted
files are decrypted by established key. Then
user could read plaintext. In case of writing
the files, before the plaintext of files are stored
files are encrypted by established key.

However, if the key is not established due
to timeout or open fail of session our system
provides cipher text to application without de-
cryption. Thus user can not view of correct
contents of the files. User may attempt to
store the file without encryption, then system
print out error messages since unencrypted files
are violate the our goal.

4.2 Case 2: Group members

Here we assume that A is an owner of an en-
crypted file and B is a user who wants to access
A’s file, respectively. To access A’s file, it is

Owner of the files Use without session

Session Start

Key timeout

success

fail

7““’1%'7

[Read] [wrmee] [Read | [wme= |

Cipher text Plain text

[appicaton | [Exormessage|

e] [we]| =2 o
| Plain text

Cipher text
‘ Decryption ‘

‘ Encryption ‘ Cipher text Plain text
1 Cipher tex
Storage ‘

1 plaintext
‘ Application ‘ ‘

[optcaron | [Eozorm emnoe]

Figure 2: Flow of accessing a file by group mem-
bers

required to satisfy two conditions by user B.
Firstly, a session of user A has to be opened
by the time of access. When the session of A
is closed, the key is not available in anywhere,
thus B can not encrypt the file of A. The sec-
ond condition is dependent on the underlying
access control in TOS. In case of generic Linux,
the user A has to open the group read permis-
sion for the B under the DAC (Discretionary
Access Control) scheme. The Figure 2 shows
an instance of group sharing.

[open(), read(), write()] User mode

System.call

System call interface

((winixes] [poses

EXT3 Kernel mode

Buffer cache

Device driver

[70 request
Disk controller

Figure 3: Overall Architecure

Hardware

- j
input
—| hash

64 bit

sys_write()
128bit ’
ext3_file_write()

Main Plain text

Memory
Crypto Engine :::

cipher text
generic_file_write()

Figure 4: Encryption Process

5 Implementation

5.1 Encryption and Decryption

We implemented a prototype of our proposed
system on Linux 2.4.27 modifying EXT3 file
system. Although all system parts are not im-
plemented, we implemented the core parts of
the proposed system, that is encryption and
decryption parts.

Overall architecture of Linux file system
is presented in Figure 3. At the user mode,
application program calls the file operation,
then virtual file system call the system calls of
specific file systems such as Minix, MSDOS,
EXT2, EXT3, and so on. Next, each specific
file system might access to disk through device
drivers[6][8]. As you can see in Figure 3, our
system interposes the encryption and decryp-
tion into EXT3 file system.

If the application program executes the wri
te() instruction, then Linux system calls sys_wr
ite() system call. Next, Almost all specific file
systems deal with generic files call generic_file_
write(). Especially, EXTS3 file system first calls
ext3_file_write() for journaling then call generic_
file_write(). Figure 4 illustrates with a simple
diagram of our internal structure. Our pro-
posed file system calls generic_file_write() after
the contents of file are encrypted by predefined
key, . We used the symmetric key system as a
cryptographic algorithm. Figure 5 is in case of
reading. In this case, data flows opposite di-
rection with writing. After reading a file from
the disk using generic_file_read(), contents of
file are decrypted by predefined key. As a re-

sys_read()

Key
input
—* hash

64 bit

128 bit

Plain text

Main
Memory OES
— Crypto Engine | e

cipher text
generic_file_read()

Figure 5: Decryption Process

sult, application can process a plain text data.

5.2 Cryptographic Algorithm

We use ‘Scatterlist Cryptographic API’ pro-
vided by Linux kernel as a our cryptographic
API. This ‘Scatterlist Cryptographic API’ make
a variety of cryptographic algorithms apply at
the Linux kernel mode very easily. Our system
is possible to provide various symmetric key al-
gorithms such as DES, Triple DES, AES, and
Blowfish. DES uses 64bits key and AES uses
128bits key[7]. To create a key with correct
length, we convert a key from the user to hash
value applying for hash function. Although it
might cause a little overheads, it is safe from
the cracking like a dictionary attack. Also, it
provides convenient to user since users do not
need to input a key with specific length.

6 FEvaluation

In this chapter we analyze the encryption and
decryption overheads. We compare original
EXT3 file system with the proposed system
using two types of data. In the first test we
made 1024 different files of each 8KB size. In
the second test, 8 files of 1MB size was made.
Then we copy one 8KB file 1024 times, and
one 1MB files 8 times, respectively.

Table 1 illustrates the performance of our
system. X denotes a specific filesystem such
as EXT3, EXT3 with AES, EXT3 with DES,
and EXT3 with Blowfish. The test consists of

Table 1: Performance evaluation of the proposed
system

1K byte X 1024
x EXT3 with AES with DES with Blowfish
Copy
From X to EXT2 0.131s 0.701s 0.755s 0.717s
From EXT2 to X 0.215s 0.673s 0.808s 0.788s
From X to X 0.017s 1.255s 1.440s 1.385s
1M byte X 8
X
EXT3 with AES with DES with Blowfish
Copy
From X to EXT2 0.063s 0.630s 0.695s 0.657s
From EXT2 to X 0.125s 0.564s 0.714s 0.713s
From X to X 0.122s 0.743s 0.827s 1.306s
25
CFsS
20 TCFS
2
=
g 15
o
% TCFS
2
c L
5 10
>
o EXT3/AES
EXT3/AES
5 —
[EXT3 /AES
0
Read Write Copy
Operation Operation Operation

Figure 6: Comparison of overheads for each op-
eration

three types of copy operations as follows:

1. From X to EXT2: the system copies the
files from each X to EXT2. This test
represents overheads of reading opera-
tion comparing with original EXT3.

2. From EXT2 to X: the system copies the
files from EXT2 to each X. This test
shows overheads of writing operation com-
paring with original EXT3.

3. From X to X: this test means overall
overheads of each X.

All tests are performed on a Pentium 4 at 1.5
GHz with 512MB of main memory. As it is
obvious from the experimental data, original

EXT3 is much faster than the others. The sys-
tem that uses AES algorithm is fastest among
three different systems with each cryptographic
algorithm. As a result, we accept AES al-
gorithm as our core cryptographic algorithm
since it is very secure and fast.

Figure 6 illustates overheads ratio of our
system compared with CFS and TCFS. We
get experimental data from original papers of
CFS[2] and TCFS[3]. In read operation, our
system with AES is about 5 times slower than
original EX'T3fs while TCFS is about 19 times
slower than original NFS. In write operation,
our system with AES is about 3 times slower
than original EXT3fs while TCFS is about 11
times slower than original NFS. If TCFS is
compared with EXT2fs, it has heavy loss of
performance since NF'S has overheads itself.

In copy operation, our system with AES
is about 6 times slower than original EXT3fs
while CFS is about 22 times slower than orig-
inal EXT2.

We believe that our system can be more
improved but at this moment its overheads are
still acceptable.

7 Conclusions

Our system aims to balance security and con-
venience with minimizing performance over-
heads. We achieved security by including cryp-
tographic mechanisms. Especially our system
is secure from theft and cracking. Even though
system when an administrator wants to spy
out user’s private data, the system is highly
secure.

Eliminating additional attach and detach
command, we achieved convenience. Also our
system provides Linux group sharing keeping
security. Finally, we achieved high performance
by designing cryptographic mechanisms to be
run in the kernel. Our system has only cryp-
tographic overheads.

We plan to implement other parts of our
proposed system. Also we will encrypt impor-
tant meta data that can give a clue to attack-
ers for guessing original data.

Another possible feature of our system is
integrity assurance. Currently, our system does

not preserve integrity of data. Preserving in-
tegrity of data is very important for the sys-
tem. Currently we consider digital finger print-

ing or digital watermarking as an integrity checker.

References

[1] R. S. Sandhu and P. Samaratiy, “Access
Control: Principles and Practice,” IEEE
Communications, 1993.

[2] M.Blaze, “A Crypographic File System for
Unix.,” In proceedings of the first ACM
Conference on Computer and Communica-
tions Security, 1993.

[3] G. Cattaneo, L. Catuogno, A. Del Sorbo,
and P. Persiano, “The Design and Im-
plementation of a Transparent Crypto-
graphic Filesystem for UNIX.,” In Pro-
ceedings of the Annual USENIX Techni-
cal Conference, FREENIX Track, pages
245.252; June 2001.

[4] C. P. Wright, M. Martino, and E. Zadok,
“NCryptfs: A Secure and Convenient
Cryptographic File System.,” In Proceed-
ings of the Annual USENIX Technical
Conference, pages 197-210, June 2003.

[5] E. Zadok, I. Badulescu, and A. Shen-
der, “Cryptfs: A stackable vnode level
encryption file system,” Technical Report
CUCS-021-98, Computer Science Depart-
ment, Columbia University, June 1998.

[6] D. P. Bovet, and M. Cesati, “Understand-
ing the LINUX Kernel,” O’Reilly, 2nd Edi-
tion, 2003

[7] B. Schneie, “Applied Cryptography,”
JohnWiley & Sons, 2 edition, October
1995.

[8] R. Love, “Linux Kernel Development,” De-
veloper’s Library, 2004

