On the Privilege Transitional Attack
in Secure Operating Systems

Hyung Chan Kimf

R. S. Ramakrishnaf

Kouichi Sakuraif

TDepartment of Information and Communications,
Gwangju Institute of Science and Technology (GIST),
1 Oryong-dong, Buk-gu, Gwangju 500-712, Rep. of Korea

{kimhc, rsr}@gist.ac.kr
tFaculty of Computer Science and Communication Engineering

Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

sakurai@csce.kyushu-u.ac. jp

Abstract In conventional Unix/Linux systems, getting the superuser permission exploiting
setuid programs is prevalent threatening the given system. In this paper we examine the pos-
sibility of privilege transitional attack in secure operating systems hardened by logical access
control and discuss on the prevention issues. We perform our experiment on general Linux and

SELinux system.

1 Introduction

The improvement of exploiting techniques on
Linux/Unix operating systems has been accel-
erated. After the publication of Buffer Over-
flow technique by Aleph One [1], many other
variations are involved such as exploiting Static
or BSS area, Double Free, Format String and
so on. All these techniques can be acquired
from the internet easily. Some of them di-
rectly affects to the practical daemon appli-
cation accompanying the privilege transition
of the attacker. Recently, as the analysis of
Linux kernel code becomes easier — the code
is opened and many resources are available in
public — attack codes wreak havoc on the ker-
nel directly and in this case the harm is more
severe.

There have been many efforts to cope with
these attacks. For example, works on the pro-
tection against buffer overflow are as follow:
fetching vulnerable functions in the library level
[2], coding a canary word in the near return
address [3], preserving a return address in the
text area and comparing with it when the func-
tion call is over [4].

Beyond the protection mechanism in the
user process level, Secure Operating Systems
(Trusted OS), which harden the security in the
kernel level, are emerged in both of research
and commercial field. Conventional Unix OS
implements discretionary access control (DAC)
wherein an owner of file can transfer the access
right of a file to the others. Whereas, Secure
OS offers level-based or role-based access con-
trol under the control of central security ad-
ministrator and this is a type of mandatory ac-
cess control (MAC). Upon this kind of logical
access control, there are some efforts, such as
GRSecuiry and Pax [5, 6], to support several
architectural protection mechanism in kernel
level.

If Linux OS contains a bug program with
setuid assignment, an attacker can exploit it
and run privileged shell with associated uid.
Surely if the uid is zero, it means that the at-
tacker can attain the whole right of the system
in sense of DAC.

The similar attack is possible in Secure OS.
This paper shows that two experimental re-
sults of program attack in generic Linux and
SELinux which is hardened by RBAC and TE.

User Assignment Permission Assignment

(UA) (PA) o
Subject Permission
(user) Operation X Object

Figure 1: Role-Based Access Control

We make the condition in SELinux similar with
setuid in conventional Linux so as to show the
same program, which includes a runtime bug,
can harm both generic Linux and Secure OS.

2 Background

2.1 Role-Based Access Control

Here we briefly introduce the concept of RBAC
[8, 12], because it is widely adopted in Secure
OS.

The main characteristic of RBAC is that it
does not directly associate a subject with an
object. Instead, by conceiving the role which
represents job functions or responsibilities in
a system or an organization [Fig. 1], RBAC
greatly eases access control administration. A
conventional DAC or a MAC system usually
involves direct association between a subject
and an object. If there are hundreds of thou-
sands of access entities — a possibility in large
enterprises — administrators of DAC or MAC
system have difficulty in managing all the ac-
cess entities. A specific role gathers a set of
necessary permissions — defined as the carte-
sian product of the set of operations and the
set of objects — in order to perform a cer-
tain duty. Hence, if an administrator of the
RBAC system wants to make a subject per-
form a given duty, then the subject is simply
assigned an appropriate role.

The abstraction of role offers several ad-
vantages as it enables us to co-opt many useful
methods from the field of software engineering.
Due to the similarity of roles and class objects,
one can adopt object oriented approach just as
for class objects. For example, if a role is once
codified, then reusability amounts to reassign-
ing subjects to the role of the same responsi-
bility. Similar duties can be easily constructed
by modifying only a few attributes of an exist-
ing role.

S
1

Object Manager Security Server

Security
Policy

Policy |
Enforcement e E—

| Decision

Figure 2: Security Server and Object Manager

2.2 A Secure OS: SELiunx

The Secure OS (Trusted Operating System)
is an operating system which includes a secu-
rity kernel providing protection from diverse
threats. The security kernel approach assists
in realizing the reference monitor with a trusted
computing base (TCB) which enforces the se-
curity policy of a given system [7].

SELinux (Security-Enhanced Linux) is an
instance of Secure OS. It is developed by Na-
tional Security Agency (NSA), USA. SELinux
implements the Flask architecture [9] to sup-
port several access control polices with high
degree of flexibility in Linux OS. As for ac-
cess control models, it provides RBAC and TE
(Type Enforcement) [10]. The Flask architec-
ture clearly divides logical access control pol-
icy and enforcement facility so as to enforce
several types of access control. They imple-
ment Object Manager in the kernel subsys-
tem to catch system actions ignited in the file
system or network subsystem, Object Man-
ager thus acts as an AEF (Access Enforce-
ment Facility). Also, Security Server decides
whether a given access request presented by
Object Manager has to be granted or denied
as a role of ADF (Access Decision Facility).
Therefore, Object Manager can grant or deny
the given access by the decision of Security
Server [Fig. 2]. In Security Server, Access Vec-
tor Cache is included to reduce performance
penalty by the enhanced access control. This
kind of clear discrimination between access de-
cision and enforcement gives a ability to change
a currently enforcing security policy to the oth-
ers in system runtime.

3 A Setuid Assigned Program
Attack in Conventional Linux

3.1 Setuid (Set User ID)

In Unix or Linux, the setuid is used for a pro-
gram which requires specific privileges to be
executed properly. Though the executer is
not the owner of the executing file, OS can
give some privileges associated with the file
owner’s user id to the executer. For exam-
ple, /bin/passwd program needs the privilege
of root (uid=0) during changing the password
(/etc/passwd). Thus while executing /bin/passw
program, the executing process has the right
of root to change password file which is only
accessible by the root.

The real credential of Linux kernel is asso-
ciated with euid and fsuid field in kernel pro-
cess structure. The fsuid is referenced when-
ever the file permission check is needed, and
euid concerns the other permission check.

The setuid scheme offers privilege transi-
tion so that it can be abused if the executing
program contains a runtime bug. In more de-
tail, if a user runs setuid assigned program,
the user process has privileges of the file owner
during the execution. If the executing pro-
gram has some bugs such as stack/heap over-
flow, format string, and the like, the user (at-
tacker) may exploit the bug and try to run a
shell program. If the exploitation is succeeded,
the attacker enventually has a shell with file
owner’s privileges because the setuided level
stays. Therefore, the attacker may illegally
benefit from the privilege.

[k imhclaged kinhcl$ shoani

kinhe

[k inhchigggg kinhc]$ |s -al /apacheowned_exec

-rusrer-x | oapache apache 13652 Aug 28 14:54 |, /apacheowned_axec
[k imhciam kinhc]$. /bO0f3xe

Uzing Address @ bFfffald

[k imhcOmpm kinhc]$ /apacheomned_exec SAOOR
sh=2.04% whoami
apache

sh-2.048

Figure 3:
Linux OS

setuid program attack in generic

3.2 Experiment I

Figure 3 shows our result of exploiting anex-
ecutable file which has a buffer overflow bug.
The owner of the file is a web service adminis-
trator (apache). In the result, an user (kimhc)
attacks the executable file (apacheowned_exec)
and spawns a shell with the privilege associ-
ated with that file (apache).

4 Privilege Transitional Attack
in SELinux

d

4.1 Privilege Transition in SELinux

It is possible to exploit a Secure OS based
on logical access control models if its config-
uration is inappropriate from the confusion of
security administrator. SELinux enhance its
security not from the architectural protection
mechanism — we mean by hardware-aware based
protection such as non-executable heaps — but
from the logical access control models such as
RBAC and TE. If a Secure OS offers any type
of privilege transition in runtime, it is prac-
ticable to attack the system in a similar way
in exploiting a setuid program in conventional
Linux OS.

There are two way to trigger the transition
of privileges in SELinux. One is Role Transi-
tion via newrole command — the role transition
in policy configuration is deprecated in cur-
rent version of SELinux — and the other is TE
(Type) Transition. Through the TE transi-
tion, an executing program (process) can tran-
sit its privilege to the others.

TE transition makes new labels for the newly
created subjects and objects based on TE con-
figuration in security policy. Thus we can think
that TE transition is a labeling decision mech-
anism based on policy configuration. When a
subject or an object encounters the access con-
trol enforcement, the label associated with the
corresponding access entities are referenced by
the enforcement facility (Security Server). In
a real enforcement, the label is identified as
sid (Security Identifier). If a subject’s sid is
changed by the TE transition, then the sub-

ject can perform a new privilege associated

with the transited sid. For example, if there

Table 1: A part of TE policy configuration in SELinux

type_transition sshd_t shell_exec_t:process user_t;

allow user_t httpd_admin_t:process transition;
type_transition user_t www_exec_t:process httpd_admin_t;

exist a configuration as the first line of Ta-
ble. 1, it means that a user shell process, exe-
cuted through SSH, is firstly labeled as user_t
type. Therefore, as the security context is
changed from that of SSH program to a nor-
mal user shell program, the sid is also had to
be changed.

The change of sid is dependent on the deci-
sion on the logical constitution of access con-
trol policy composed by security administra-
tor. If a security administrator mis-configures
the security policy due to the misunderstand-
ing of system status or the high degree of com-
plexity in access entity organization in the given
system, there might be possible unwanted TE
transitions.

4.2 Experiment II

As a setuid program in conventional Linux sys-
tem, we configure a certain program to tran-
sit its type while executing [Tab. 1]. With
this configuration, a user domain (user_t) can
change its domain type to httpd_admin_t by
the execution of a program of which domain
is www_exec_t. Thus the process has rights of
the web service administrator during the exe-
cution.

oot f id

In Figure 4, the result of avc_enforcing com-
mand, enforcing, means that a mandatory ac-
cess control constituted by RBAC/TE config-
uration is currently activated beyond the DAC
enforcement. A program, which contains a
runtime bug and has the type www_exec_t, en-
counters an attack and the context is changed
to root:user_r:httpd_admin_t, a privilege of web
service administrator. Note that the root in
this context is just a normal user in sense of
RBAC, as it is assigned to the normal user role
(user_r).

In SELinux, there is a command runas which
supports Type transition according to security
policy and it works via execve_secure security
API function [Fig. 5]. If it is configured to
transit from one context to the other context,
the direct type transtion is possible with this
command. Thus if an attacker analyze the
mis-configured part of security policy, it is pos-
sible to transit using the command. In an ex-
perimental case [14], attackers tried to analyze
and depicted the logical flow of configuration
via list_sids command or direct trial of privi-
lege test.

5 Discussion on Prevention

In last two sections, we examined that it is pos-

wid=0lroot) gid=0iroct) graups=0iroct),T(bin), 2 dsenon), 3sys), d(ach) B(dick),1¢ sible that a Secure OS, enforced with logical

(wheel) context=root:user_riuser_t id=24
s root f ave_enforcing
enfarcing

e 01 O S o

Uzing Address @ bFfffard

[root@~~r root]ff |z ——context | arep wwwowned_exec
Sk root root system_Ulobject_riwm exec_t
[rootd’: ...~ root]d . /wwwowned_exec SADDR

sh=2. 0Bkt Ausr/local/sel inn/bin/ id

wwmomned_exec

uid=0(root) gid=0(root] groups=0(raot),1(bin),2(daemon), 3svs), 4(adn) Bldisk) 1€

(wheel) context=root:user_r:httpd adnin_t sid=253
sh=2 .06kt

Figure 4:
SELinux

Privilege Transitional Attack in

i root f id

uid=0(root) gid=0(root) aroups=0{root),1(hin),2(daenon;,3(svs), 4(adn) Bldisk) 1€

{whea!) context=raot:user_riuser_t sid=249
“wtep root f runas —t htted_admin_t /bin/bash
bash: /root/ bashrc: @2t ATE

oy root 1 id

wickOCroot) gid=0Croot) groups=0Croct), 1(bin}, 2(daenon),3sys), 4Cadn), Bldisk), 1C

{whee!} context=root:user_r:httpd adnin_t sid=23
e root 11

Figure 5: Privilege Transition via runas com-
mand

access control, can be harmed from intuitive
and careless security configuration. Here we
discuss the prevention issues on Secure OS.

There are two main perspectives to pro-
tect operating systems. One is the protec-
tion with the knowledge of system architec-
ture. Making the position of stack in program
runtime environment to be random or apply-
ing the non-executable stack are examples of
such approach. On this approach, one has a
thorough grasp of attack methods case by case
and develops protection mechanisms in a given
system.

However, there exist several methods to
bypass these approaches. Already it is an-
nounced intruding techniques detouring Stack
Guard, Stack Shield, and some of protection

mechanisms of PaX. To the architecture-dependenty .1 .o of Secure OS respectively
, g

approach, there may be continuous cycling pro-
cess of developing patches for protection and
trying to discover bypassing techniques.

Compared with the above approach, pro-
tection strategies by adopting logical access
control, such as lattice-based or role-based ac-
cess control, have advantages over the specific
architectural concentration. For instance, the
harm is limited within the role of exploited
process in RBAC-based Secure OS and the
attacker can not overturn the whole system.
However, if access entities are too many so that
security administrator can not grasp the whole
understanding of the system, there might be
possible mis-configuration thereby resulting in
logical error in access control enforcement.

The architecture-dependent approach is still
valid, but it is surely needed to inspect the log-
ical flaw of the currently enforced policy for
Secure OS which adopts the enhanced mod-
els of security. It is difficult to verify all the
details of logical constitution of access control
for security administrators. Therefore, the es-
tablishment of formal verification method has
to be established with automatic and visual
manner.

There are some instances of verification ef-
forts for the case of RBAC such as Alloy [11],
Petri Net [15], and Z [12]. DTOS [13] is the
representative example of specification of Se-
cure OS using Z. However, there are no tools

connected with practical policy composition.
Whenever a policy is changed, the policy en-
forcement tool has to verify the integrity of
policy and shows the information flow to the
security administrator analytically. In case of
SELinux, a GUI-based configuration tool ex-
ists, but it is not yet adopt the formal verifica-
tion techniques, thus security administrators
still have burden for the confidence of security.
Therefore, automatic verification tool, which
can be used whenever the current policy has
to be changed, has to be developed.

6 Concluding Remarks

This paper examined the privilege transitional
attacks on generic Linux and SELinux, an in-
If the given
Secure OS offers privilege transitional scheme
in its enforcement rules, it is possible to ex-
ploit with the same degree of danger in con-
ventional Linux OS. Therefore, it is strongly
needed to connect the automatic and depictive
formal verification tool with Secure OS by the
time of policy alternation.

References

[1] Alphe One, “Smashing The Stack For Fun
And Profit,” Phrack Vol.7 Issue. 49, File
14 of 16, 1996.

[2] http://www.research.avayalabs.com/project/libsafe/

[3] http://www.immunix.org/stackguard.html

http://www.angelfire.com/sk/stackshield/

ot

http://www.grsecurity.net/

=2

http://pageexec.virtualave.net/

Edward G. Amoroso, “Fundamentals of
Computer Security Technology” AT &
T Bell Laboratories, Prentice-Hall PTR,
1994.

[8] D.F. Ferraiolo, J. Cugini, and D.R. Kuhn,
“Role Based Access Control: Features and
Motivations,” In proc. of Annual Com-
puter Security Applications Conference,
IEEE Computer Sociery Press, 1995.

[9] Peter Loscocco, and Stephen Smalley,
“Integrating Flexible Support for Secu-
rity Policies into the Linux Operating
System,” In Proc. of the FREENIX
Track: 2001 USENIX Annual Techni-
cal Conference (FREENIX’'01),Jun.2001.
(http://www.nsa.gov /selinux/index.html)

[10] L. Badger, D.F Sterne, D.L Sherman,
K.M Walker, and S.A. Haghighat, “Prac-
tical Domain and Type Enforcement for
UNIX,” In Proc. IEEE Symposium on Se-
curity and Privacy, pp. 66-77, May 1995.

[11] John Zao, Hoetech Wee, Jonathan Chu,
and Daniel Jackson, “RBAC Schema Ver-
ification Using Lightweight Formal Model
and Constraint Analysis,” MIT Software
Design Group Case Study, Dec 2002.

[12] David F. Ferraiolo, Ravi Sandhu, Ser-
ban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli, “Proposed NIST
Standard for Role-Based Access Control
Model,” ACM Trans. on Information and
Systems Security, Vol. 4, No. 3, pp. 224-
274, Aug 2001.

[13] Secure Computing Corp., “DTOS Formal
Security Policy Model,” Technical Note of
Secure Computing Corporation, 1996.

[14] Security Rsearch Group, In proc. of
GIST(old K-JIST) Hacking Festival Work-
shop, Aug 2003.

[15] W. Shin, J.-G. Lee, H. K. Kim, K. Saku-
rai, “Procedural constraints in the ex-
tended RBAC and the coloured petri net
modeling ,” To be appered in IEICE Trans.
on Fundamentals, Vol.E88-A, No.l, Jan.
2005

