An Implementation of Extended-Role Based Access Control on
an Embedded System

Shin, Wookf

Kim, Hong Kookt

Sakurai, Kouichif

tDepartment of Information and Communications,
Gwangju Institute of Science and Technology,
1 Oryong-dong Buk-gu, Gwangju, 500-712, Rep. of Korea

{sunihill, hongkook}@gist.ac.kr
IDepartment of Computer Science and Communication Engineering,
Kyushu University, Hakozaki, Fukuoka 812-8581, Japan

sakurai@csce.kyushu-u.ac. jp

Abstract We implement the Extended Role Based Access Control(E-RBAC) in an embedded
environment. E-RBAC prohibits attacks which consist of ordinary operations. Although the im-
plemented access control scheme provides more trusted environment, the performance overhead

is not significant.

1 Introduction

Traditional UNIX compatible systems have been

operated under Discretionary Access Control
(DAC) policy. Although DAC was flexible and
general purpose scheme, insufficiencies in se-
curity have been pointed out. Therefore other
security policies have been adopted to estab-
lish more trusted computing bases. Manda-
tory Access Control (MAC) was introduced
and provides more concrete trusted environ-
ment by controlling the flow of information [1],
[2], [3]. Role Based Access Control (RBAC)
was applied and supports more flexible execu-
tion environments while the security informa-
tion is administrated in a centrailized manner
4, 5

Although several access control policies have
been introduced to the development of Trusted
Operating Systems (TOS), the ability of the
security kernels in TOS still has a kind of lim-
itation. The limitation is security kernels can-
not deny some attacks which consist of ordi-
nary operations. It is due to the traditional
access controls decide the legality of accesses
based on instant access control information.
Access control information is extracted from
the access subejct and object at the moment

of an access, and losts its validity after the
decision. In the decision process, the associa-
tion information between the operations is not
considered at all.

The Extended Role Based Access Control (E-
RBAC) was proposed to overcome the limita-
tion and extend the functionality of traditional
access controls [6]. E-RBAC controls accesses
based on associated access control information
as well as the traditional access control infor-
mation.

On the other hand, it is expected a perfor-
mance overhead exists, because E-RBAC sys-
tem considers the additional information to
make access decisions. It is necessary to con-
firm how much the overhead is generated. In
this paper, we implement a simple E-RBAC
system in an embedded environment and test
the performace overhead.

This paper is organized as follows. In Sect.
2, we beriefly introduce the E-RBAC concept
and its model. In Sect. 3, the implementa-
tion architecture is discussed and the results
of the performance test are presented in Sect.
4. Sect. 5 is the conclusions.



Permitted behavioral patters of log file
managements

Figure 1: The example of a positive PC

Positive

Negative | Behavioral pattern in race condition attacks

Figure 2: The example of a negative PC

2 The Extended Role Based
Access Control (E-RBAC)

E-RBAC limits accesses based on the associ-
ated access control information as well as the
traditioanl access matrix information. The as-
sociated access control information represented
as the ordered set of operations, and they are
specified in E-RBAC model as Procedural con-
straints (PC) [6].

PC is the partially ordered set of permissions

having the property of positive or negative value.

A positive PC unit describes a permissible se-
quence of executions. A negative PC unit rep-
resents a dangerous sequence of executions.

Fig. 1 shows an example of positive PC. The
positive PC describes the permitted execution
sequences in a log file manipulations. As the
state diagram presented, there are three al-
lowed execution sequences: First, open the log

file, read it several times, and close it. Second,
users can write some data after open the log
file, and close it. Third, open and close the
log file with nothing. In other words, for the
log file, ‘read and write’ access is not permit-
ted. In the system, it is assumed that read
only or write only operation is enough to pro-
vide. Considering some attacks remove or re-
place the log record which includes attacker’s
information after they read and find the record
of the log data, it is reasonable to not support
the ‘read and write’ operation on log files. The
positive PC describes the security policy.

Fig. 2 shows an example of negative PC. The
negative PC models a race condition attack to
a sendmail daemon [7]. The attack executes
the sendmail program, and repeats linking and
unlinking for a redirection of the object bind-
ing. The core execution sequence of the attack
can be modeled as the figure, and E-RBAC can
deny the attack if it is specified in its access
control model.

E-RBAC system checks the legality of an op-
eration more effectively against various system
threats by considering the procedural informa-
tion as well as the traditional access matrix in-
formation, An execution of an operation will
be denied if it accomplishes a negative execu-
tion procedure, or if it deviates from the de-
fined positive sequences.

E-RBAC has its formal model for the its spec-
ification and verification. The CCPN formal
model was proposed for E-RBAC based on
CPN formalism [6]. It can specify E-RBAC
system including the positive and negative PCs,
and the specification can be verified with au-
thomated tools such as CPN Tools [8] Fig. 3
shows an example of negative PC which is mod-
eled with CCPN formalism.

3 Implementations

Currently, several implemenatations of Trusted
Operating System have been exist [1], [2], [3].
[4], [5], [9]. They are implemented based on
various types of kernels.

On the other hand, there was a remarkable
movement in the field of researches based on

monolithic Linux kernels. SELinux, one of



ﬁn. £k, ok, mode, riok, mm, behan
[

Quid, sid, oid, mede, 1ok, 1p, benad

Figure 3: An example of CCPN of a negative
PC

the most representitive security kernels based
on Linux, adopted the Linux Security Module
(LSM) [10] as their core framework of access
controls. Also, LSM is accepted officially as
one of the security mechanisms of Linux ker-
nel from the kernel version 2.6 officially. To
sum up, the current trend of development of
TOS is using LSM modules. It can be a good
news for the companies because it is need to
establish a kind of standard in TOS deveolop-
ment.

However, the approach using LSM was not
reasonable for our implementation. In our im-
plementation, the target system is an embed-

ded system, IFC-ETK100 [12] using se3208 32bit

EISC processo r[13]. The operating system is
uClinux version 2.4.19. The embedded sys-
tems usually have a kind of limitations in com-
putational power and functions being compared
to Linux operating systems and desktop ma-
chines. Therefore it needs not bunch of access
control functions defined in LSM, and it can
be an overhead to adopt the LSM architecture
into light-weight systems. Many embedded
systems does not support for loadable mod-
ules, it is unnecessary that the flexible LSM
architecture also. Moreover, LSM approach is
not proven as the best or efficient solution for
TOS development [11].

Therefore, we implement our access control
structure directly modifying kernel functions

> Jlr: /hame//suniil

drpRr—xr—x 12288 Sep 2 2004 lost+found
drpsr—yr—x 1024 Tul 8 2003 mnt
dr=gr=yr—x 0 Apr 17 16:55 proc
drugr—sr—s Jul 8 2003 root
drusr—nr—s 1024 Tyl 8 2003 shin
drusr—xr—x 1024 Apr 17 16:55 tmp
drugr—xr—x 1024 Sep 2 2004 usr
drugr—sr—= 5 1024 Tul 8 2003 var
/> fbin/themis_forkattack

attack starts

fork to racel’m the child

1. Exec sendmail

sending mails...

To... Jjohndoe@dummy.net

I'm the parent, child has pid 10

2. unlink

2. Tink

wr R R R
cococoooos
cococoooos

=

5

&

r}EELI(D An attack is detected I

—>rattack Finished
pid 9: failed 4036
/> Messages: hello

[HH] [2HM][FEM]

Figure 4: Examples of an attack execution and
its detection

of the system instead of taking LSM archi-
tecture. At first, we simply added the field
of permission vector to the data structures of
process and files. The permission vectors are
calculated in terms of permitted roles. The re-
lation between process, roles, behaviors, and
permissions are considered as E-RBAC model
describes [6], and finally the set of allowed per-
missions for a process are calculated. Access
control decision functions (ADF) are decide
the legality of each accesses comparing the sets
of roles between process and files, and it is im-
plemented as a kernel function. The frame-
work provides access controls based on tradi-
tional access matrix information.

For the investigating the execution sequences
of operations, we also simply added a field to
the data structure of processes, and the value
of the field is the current state in CCPN. ADF
calculates the next state based on the cur-
rent states of each processes and actions which
the processes want to execute. Therefore, all
processes itinerate CCPN by executing opera-
tions.

Fig. 4 shows an execution result of a race con-
dition attack and its detection. The attack
spawns two processes of executing a sendmail
process and linking and unlinking repeatedly.
The E-RBAC system detects the attack suc-
cessfully.

The main reason of the implementation is the
test of overhead. The testing program was
a simple execution program and a copy pro-
gram. The simple execution program executes
the other program which prints a short sen-



Sinpk Executbn Test

0 0 righalKemel @ M odifed Kemel

Tin e Costs (sec
O RPN Wk o J

Figure 5: The execution time of the simple
execution program

Fie Copy Test

H 0 rghalKemel @ M odifed Kemel

Tin e Costs (sec
O N WP Uy J o0

Repetibns

Figure 6: The execution time of the copy pro-
gram

tence in the LCD panel of the embedded sys-
tem. The copy program make a copy of a 512
byte file. Considering the access enforcement
functions intervene all of file operations, it is
reasonable to measure the execution time of
the two programs.

Fig. 5 shows the execution time of the sim-
ple execution program and the Fig. 5 shows
the results of the copy program. Each pro-
gram is executed repeatedly from 100 times to
2000 times, and the execution times are mea-
sured. As the figures show, there is no signifi-
cant overhead in the E-RBAC system.

4 Conclusions

In this paper, we introduced the E-RBAC con-
cept and its implementation. The extended

access control efficiently limits attack trials which

consist of allowed operations. The implemen-

tation result of the access control in an em-
bedded system showed an example case of the
detection of the sendmail race condition at-
tack.

Also, the performance overhead is tested with
two simple file manipulation examples. The
test result showed that there is no significant
overhead in E-RBAC system.

Acknowlegement

This research was partly supported by Joint
Forum for Strategic Software Research (SSR)
of International Information Sciense founda-
Also, it was partly supported by the
University Research Program of the Ministry
of Information and Communication, Republic
of Korea.

tion.

References

[1] UNICOS Multilevel Security (MLS) Fea-
ture User’s Guide. SG-2111 10.0, Cray Re-
search, Inc. (1990)

[2] Branstad, M., Tajalli, H., Mayer, F.: Se-
curity issues of the Trusted Mach system.
Proc. of 4th Aerospace Computer Security
Applications Conference (1998), 362-367

[3] Flask: http://www.cs.utah.edu/flux/fluke

[4] Ott, A.: The Rule Set Based Access Con-
trol (RSBAC) Linux Kernel Security Ex-
tension. 8th Int. Linux Kongress, Enschede
(2001)

[5] Trusted Solaris: http://wwws.sun.com/
software/solaris/trustedsolaris /index.html

[6] Shin, W., Lee, J.G., Kim, H.K., and Saku-
rai, K. ”Procedural Constraints in the Ex-
tended RBAC and the Coloured Petri Net
Modeling”, IEICE Transactions on Fun-
damentals, Special Section on Cryptog-

raphy and Information Security(to be is-
sued), Vol.LE88-A, No.1, Jan. 2005.

[8lgm]-Advisory-20.UNIX.SunOS-
sendmailV5.1-Aug-1995.README



[8] CPN Tools:
http://wiki.daimi.au.dk/cpntools/

[9] Loscocco, P., Smalley, S.: Integrating
Flexible Support for Security Policies into
the Linux Operating System. Proc. of
the FREENIX Track: 2001 USENIX An-
nual Technical Conference (FREENIX '01)
(2001)

[10] LSM: http://lsm.immunix.org/

[11] gresecurity:
http://www.grsecurity.net /lsm.php

[12] InterFC: http://www.interfc.co.kr

[13] Advanced Digital Chips Inc.:
http://www.adc.co.kr



