MAPbox: Using Parameterized Behavior Classes to Confine
Applications

Anurag Acharya, Mandar Raje
Dept. of Computer Science, University of California, Santa Barbara

TRCS99-15
May 1, 1999

Abstract

Designing a suitable mechanism to confine commonly used applications is challenging as such
a mechanism needs to satisfy conflicting requirements. The trade-off is between configurability
and ease of use. In this paper, we present the design, implementation and evaluation of MA Pboz,
a general-purpose confinement mechanism that retains the ease of use of specialized sandboxes
such as Janus and SBOX while providing significantly more configurability. The key idea is to
group application behaviors into classes based on the expected functionality and the resources
required to achieve that functionality. Classification of behaviors provides a set of behavior
labels (class names) that can be used to concisely communicate the exzpected functionality of
programs between the provider and the users. This is similar to the MIME-types used to
concisely describe the expected format of data files. Classification of application behaviors also
allows class-specific sandboxes to be built and instantiated for each behavior class. We present
a study of the behavior and resource requirements of a set of commonly used applications and
use the results of this study to define a set of application behavior classes. We also evaluate how
effective this technique is in confining a variety of commonly used applications and how much
overhead it introduces.

1 Introduction

The applications that form our computing environment are often unsecured. These include net-
work applications, which are often vulnerable to buffer-overflow attacks;' plug-ins downloaded to
play/display different data-formats, which are often provided in a binary form and difficult to check
for security flaws; executable content for extensible applications such as ghostview, gnu-emacs,
MIME-mail,? and Word?; and CGI scripts used for generating dynamic web documents, which can
either be subverted or can interfere with other unrelated scripts. Unsecured applications can pose
a threat to the security and privacy of a user as they run with her full privileges. Given the num-
ber of such applications in a typical computing environment and their size and complexity* it is
impractical to even attempt to ensure that all the applications in one’s environment are secure. A

130 of the last 70 CERT advisories [6] and 38 of the 83 Caldera advisories [5] are concerning buffer-overflow attacks.
*For example, Happy99 [12] and Back Orifice [13] were both distributed as mail attachments.

3The recent Melissa worm [21] was written in Visual Basic for Applications.

“For example, ghostscript 5.5 is over 240K lines of C code; pine 4.0 is over 270K lines of code.

less ambitious, and perhaps more achievable, goal is to try to limit the amount of damage that can
be caused by unsecured applications by limiting their access to resources.

Designing a suitable mechanism to confine commonly used applications is challenging as such a
mechanism needs to satisfy conflicting requirements. The key trade-off is between configurability
and ease of use. On one hand, such a mechanism should be configurable enough to allow different
policies for different kinds of applications. On the other hand, it should be easy to use and non-
intrusive. That is, the effort needed to administer and use it should be small. Furthermore, an
end-user should be able to deploy the mechanism on her own, without special privileges. In addition
to being configurable and easy to use, a confinement mechanism needs to be simple and reasonably
efficient. Simplicity is important since simple programs are easier to secure; reasonable efficiency
is needed as users are likely to bypass overly slow mechanisms.

1.1 Previous research

Creating confinement environments (also referred to as sandbozes) has long been an active area
of research. Previous research into creating confinement environments has taken one of four ap-
proaches which differ mainly in the trade-off between configurability and ease of use. Several
researchers have proposed some form of per-program access control [7, 9, 15, 16, 18, 26]. This
approach is highly configurable but requires users (or administrators) to specify access-control in-
formation for every program. It can work well if the number of applications is small and changes
infrequently. Current computing environments are dynamic (new programs are downloaded) and
contain a large number of applications. The second approach uses finite-state machine descriptions
of program behavior [17, 20, 22]. This provides even more configurability as different sequences
of the same set of accesses can be distinguished. To be used effectively, however, this approach
requires a careful understanding of the behavior of individual applications. Given the complexity
and the number of applications available on a single machine, it would be hard to develop suitable
behavior descriptions.

The third approach considers each application provider (author/company/web site) as a prin-
cipal and uses per-provider access-control lists (ACLs) [11, 14, 25]. This groups applications from
the same provider into the same sandbox. This is a promising approach since a user needs to
deal with potentially fewer principals than the first two approaches. This makes it easier for the
users to create and maintain the corresponding ACLs. However, this improvement is achieved at
the cost of configurability. Disparate applications from the same provider may be grouped into
the same sandbox. To allow all these applications to run, a user may have to provide an overly
coarse sandbox. Another potential problem is that the number of potential providers is large and
growing. Creating and maintaining ACLs for a large number of providers can require substantial
administrative effort on the part of individual end-users.

The fourth approach consists of special-purpose sandboxes for specific classes of applications,
e.g, document viewers [10], applets [8], global computing [2], CGI scripts [23] and programs that
run with root privileges [24]. By limiting the scope of the confinement mechanism, these techniques
significantly reduce the administration effort required. A class-specific sandbox needs to be con-
figured only once for each platform. End-users can use these sandboxes with minimal additional
effort. While each of these sandboxes are easy to use when they are applicable, they are limited in
their applicability. For each application she would like to confine, an end-user needs to find, deploy
and instantiate the appropriate sandbox. In addition to being an administrative burden, using a
variety of programs for sandboxing makes it harder to check the sandboxes themselves for security
flaws.

1.2 Key idea

In this paper, we present the design, implementation and evaluation of MAPbox, a confinement
mechanism that retains the ease of use of application-class-specific sandboxes while providing sig-
nificantly more configurability. The key idea is to group application behaviors into classes based
on the expected functionality and the resources required to achieve that functionality. Examples of
behavior classes include filters, compilers, editors, browsers, document viewers, network clients etc.
Classification of behaviors provides a set of behavior labels (names of classes) which can be used to
concisely communicate the expected functionality of a program between its provider and its users.
This is similar to the MIME-types which are widely used to concisely describe the expected format
of files. Accordingly, we refer to the behavior labels as Multi-purpose Application Profile-types (or
MAP-types). For mobile code that is downloaded on-demand, the MAP-type can be specified in
the HT'TP header (similar to the MIME-type header used currently). For CGI scripts provided by
users of a web-hosting service, the MAP-type of the script can be specified when it is submitted
for installation. For programs that are installed as a part of an OS distribution (e.g., programs in
/usr/bin), the MAP-types can be provided by the vendor in a well-known file (e.g., /etc/maps).
For applications downloaded and built locally, the MAP-type can be specified either by by the
provider (e.g., as a part of a README file) or by the end-user.

Classification of application behaviors also allows class-specific sandboxes to be developed. The
MAP-type specified for a program can be used to locate and instantiate the appropriate sandbox
before running the program. Currently, end-users can specify which document formats (or MIME-
types) they are willing to view, which application is to be used to view a particular format and
how should this application be invoked (usually specified in the .mailcap file). Similarly, MAPbox
allows users to specify which behaviors (or MAP-types) they would like to allow, which sandbox
should be used for a particular MAP-type and how it should be instantiated (specified in a .mapcap
file). This mapping can be used to automatically locate and instantiate the appropriate sandbox
for a program without requiring user intervention.

In effect, MAPbox allows the provider of a program to promise a particular behavior and allows
the user of a program to confine it to the resources she believes are sufficient for that behavior.
Since the binding of a MAP-type to its sandbox as well as the configuration of all sandboxes can
be customized by end-users, end-users retain complete control over resource usage. Application
providers gain no advantage by misrepresenting the behavior of their program. Note that, MAPbox
limits an application to only one behavior.

This proposal raises several questions. First, can application behaviors be suitably classified?
That is, do application behaviors and the corresponding resource requirements fall into clean cate-
gories? Second, how does MAPbox deal with a group of applications that exhibit similar behavior
but need different resources? For example, finger and whois both connect to a remote server,
request some information, receive a reply and print it to screen; however, they differ in the port
they connect to and in the local profile files they may access. Third, how are the individual sand-
boxes used by MAPbox to be implemented? There are conflicting constraints — on one hand, all
accesses must be checked; on the other hand, the overhead should be acceptable. Finally, how well
does MAPbox work in practice? That is, is it able to confine commonly used applications at an
acceptable cost?

In section 2, we describe a study of the behavior and resource requirements of 50 commonly used
applications. Based on this study, we have defined a set of behavior classes and the corresponding
sandboxes. In section 3, we present the design and implementation of MAPbox. In section 4,
we describe how MAPbox can be configured and used. In section 5, we present an evaluation of

open("/usr/lib/libsocket.so.1", 0_RDONLY) =3
fstat (3, OxEFFFEAQQ) =0

mmap (0x000000, 8192, PROT_READ, MAP_SHARED, 3, 0) = OxEF7B000
mmap(OXOOOOOO, 8192, PROT_EXEC, MAP_PRIVATE, 3, 0) = OxEF7900
close (3) =0

Figure 1: The system-call sequence for dynamically linking a library.

MAPDox: its performance as well as how well it is able to confine commonly used applications. We
conclude with a discussion of the limitations and open questions for this approach.

2 Identifying Behavior Classes

To determine if the behavior and resource requirements of commonly used applications can be
grouped into distinct categories, we studied 50 commonly used applications.’ Our goal in selecting
these applications was to be able to study a large and diverse set of commonly used applications.
For each application, we obtained a trace of the OS system-calls it made while executing a workload.
To design the workloads for our study, we started with an intuitive notion of behavior classes such as
editors, viewers, compilers, mailers, etc. For each class, we defined a series of tests with increasing
complexity. For example, for editors, we used the following workload: (1) start up with no file
and exit; (2) start up with an existing file and exit; (3) start up with an existing file, modify and
exit; (4) for text editors, edit a file, spell-check it and exit; (5) for graphical editors, generate a
postscript file and exit.® Structuring the workload in this manner facilitated trace analysis; once
we had analyzed the less complex behaviors, the more complex behaviors were easier to analyze.

To collect the system-call traces, we used the truss utility available on Solaris. It traces
system-calls, signals and machine-faults. For each system-call, it prints the name, arguments
and the return value. As far as possible, we summarized these traces by identifying groups of
system-calls and relating them to higher-level operations such as: accessing files, linking libraries,
making/accepting network connections, creating child processes, accessing the display, handling
signals etc. Figure 1 presents one such group. For other examples, please see [4]. In some cases,
to verify the mapping between a higher-level operation and the system-calls it generates, we wrote
short programs performing the operation and compared their traces with that of the application
being studied.

Based on the results of this study, we identified a set of behavior classes and their resource
requirements. We first determined the resources needed by each application. By resources, we
mean files, directories, network connections (hosts and ports), the X server, ability to create new
processes, environment variables, specific devices, and signals. We started the task of identifying
behavior classes with an intuitive notion of program behaviors and refined this notion using the
resource requirements of individual applications. For each behavior class, we identified resources
commonly required to implement core functionality. Some applications have additional resource

5The applications were vi, pico, gnu-emacs, idraw, xfig, ghostview, pageview, xv, imagetool, xdvi, cc, gcc,
c++, 77, javac, pine, elm, mailtool, trn, lynx, Netscape, hotjava, sh, ksh, tcsh, ftp, finger, rwho, whois,
telnet, latex, dvips, bibtex, ical, xcalc, xbiff, xclock, make, xterm, sed, grep, comm, nroff, detex, deroff,
compress, gzip, tar, 1d, and httpd.

5Most of the workloads used in this study are described in [4].

requirements that are not warranted by their core functionality. For example the Solaris C compiler
opens a socket to a license server to check licensing information. Other compilers that provide the
same functionality (e.g., gcc) do not require such resources. Based on the Principle of Least
Privilege, we do not consider such resources as requirements for the corresponding behavior classes.
Note that the resource requirements for a class is not simply the union of the resource requirements
for the corresponding applications that we studied. Instead, they are the set of resources that we
believe are required to implement the expected functionality for the class. In Section 5, we compare
these expected resource requirements associated with a class with the actual resource requirements
of commonly used applications that provide the same functionality.

In addition, we identified a set of parameters for each class. Parameters of a class capture
common patterns in the idiosyncratic resource requirements of the applications belonging to the
class. For example, finger and whois both connect to a remote server, request some information,
receive a reply and print it to screen. For this, they need to link in networking libraries and make
network connections. However, they differ in the port they connect to and in the local profile files
they may access. In this case, the server port and the profile file are the parameters of the behavior
class containing finger and whois.

Table 1 presents the behavior classes we identified and their parameters. In addition to the
parameters listed in the table, each class has two additional parameters — a read-home directory
and a write-home directory. These directories are expected to hold all the files specific to the
application. The application has read and execute access to the read-home directory and its
descendants and has write access to the write-home directory and its descendants. For example,
the read-home directory for httpd contains the configuration files for the web server whereas the
write-home directory contains the logs.

We do not claim that the classification presented in Table 1 is either unique or complete. Our
goal in identifying these classes was to demonstrate that application behaviors and the correspond-
ing resource requirements can be grouped into clean categories. We expect this classification to be
refined based on further experience. This would be similar to the evolution of MIME-types which
have been repeatedly refined as users have better understood their potential.

3 Design and implementation of MAPbox

Our implementation of MAPbox runs on Solaris 5.6 and confines native binaries. We first describe
how the sandboxes for individual behavior classes are specified. Next, we describe how MAPbox
implements individual sandboxes.

3.1 Sandbox description language

We base our sandbox description language on the configuration language used by Janus [10], a class-
specific sandbox for document viewers. Our language consists of eight commands: path, connect,
putenv, rename, accept, childbox, define and params. Figure 2 provides a brief description for
these commands (Appendix A contains a BNF description). Of these, the first three commands
were used in Janus. For a detailed description of these commands, please see [10]. The last
five commands are new to MAPbox and are described below. A sample sandbox specification is
presented in Appendix C.

rename: many applications try to access sensitive files such as /etc/passwd and /etc/utmp.
The rename command can be used to redirect such accesses to safe replacements. Among the

Behavior class

| Parameters

Description

filter Unix-like filters; cannot open files, access network/display or exec pro-
cesses (e.g., sed, grep, comm, detex, deroff)
transformer infile, can read infile, write outfile; cannot access network/display or exec
outfile processes (e.g., compress, gzip, image format converters)
compiler dir/filelist,| can read files in dir/filelist and on dirs on libpath; can write
libpath, outfile; cannot access network/display; can exec compilers (e.g., gcc,
outfile make, tar, dvips, latex, nroff, bibtex, 1d)
editor dir/filelist | canread/writefilesin dir/filelist; cannot access network; can access
display; can exec filters/transformers (e.g., gnu-emacs, vi, pico,
xfig, idraw)
viewer dir/filelist | can read files in dir/filelist; cannot access network; can access dis-
play; can exec viewers (e.g., ghostview, pageview, imagetool, xdvi)
download host, port, can connect to host at port; can write (but not read) files in dir;
dir cannot exec processes; cannot access display (e.g., finger, whois, rwho,
ftp get commands)
upload host, port, can connect to host at port; can read (but not write) files in dir;
dir cannot exec processes; cannot access display (e.g., £tp put commands,
HTTP file upload)
mailer mailbox, can read/write mailbox; can connect to gateway on port 25; can access
gateway display; can exec viewers (e.g., pine, elm, mailtool)
browser hostlist, can connect to hosts in hostlist at port, can access display; can exec
port viewers (e.g., lynx, hotjava, trn)
info-provider | hostlist, can accept connections at port from hosts in hostlist; can read (but
port, dir not write) files in dir; cannot access display; cannot exec processes
(e.g., fingerd, rwhod, ftpd allowing gets)
server hostlist, can accept connections at port from hosts in hostlist; can read (but
port, dir not write) files in dir; cannot access display; can transformers (e.g.,
httpd)
shell mapfile, can read mapfile, can exec binaries given in mapfile (the correspond-
classlist ing sandbox is also specified); classlist can be used to limit the be-
havior classes permitted; cannot access network; cannot access display
(e.g., ksh, csh, tcsh)
game can access display; cannot access network; cannot exec processes
applet host, port can access display; can connect to host at port; cannot read/write

files; cannot exec processes.

Table 1: Parameters and descriptions of the behavior classes identified by this study. In addition
to the parameters listed above, each class has two additional parameters — the read-home and
write-home directories. An application has read and execute access to files in its read-home and

write access to files in its write-home.

| Command | Description |

path used to allow or deny read/write/exec access to a list of files (e.g., path deny

read,write,exec /etc). Wildcards are allowed; relative paths are not allowed; deny takes

precedence over allow.

rename used to redirect accesses to a particular file to a different file (e.g., rename read /etc/passwd

/tmp/dummy). Wildcards and relative paths are not allowed.

connect | used to control connections to remote hosts and the X server. Must be specified as IP

addresses; wildcards allowed (e.g., connect allow tcp 128.111.%.%:80/128.32.%.%:8080)
accept | used to control connections from remote hosts (e.g., accept allow udp 128.111.%.%:513)
putenv | used to add a variable definition to the environment (e.g., putenv HOME=/tmp/boxedin)

childbox | used to specify the sandbox to be used for processes forked by the confined application (e.g.,

childbox viewer). At most one childbox command allowed per sandbox.

define used to define a symbolic value that can be used later (e.g., define NETWORK FILES

/etc/netconfig /etc/nsswitch.conf /etc/.name service door)

params | used to define the parameters for a sandbox (e.g., params infile outfile). Parameters

are refered to using a § prefix (e.g., $outfile)

Figure 2: Brief description of the sandbox description language.

applications that attempt to access these files, many don’t actually require information from them
and are able to operate in the presence of such redirection (e.g., ghostview).

accept: this command is the server-side analogue of the Janus connect command. It can be used
to control the set of peer hosts as well as the set of ports that the confined application can listen
on. The value NON_SYSTEM_PORT can be used to indicate any port not reserved for system services.

childbox: this command is used to specify a different sandbox for the processes forked by the con-
fined application. If no childbox command occurs in a sandbox specification, the original sandbox
is used to confine the children, if any.

define: this command can be used to define symbolic constants which can then be used in other
commands. Symbolic constants can be used to simplify the task of porting sandboxes across
platforms. For example, to be able to access the network on many platforms, an application needs
to link in a platform-dependent set of libraries” and read a platform-dependent set of configuration
files.® Symbolic definitions can be used to isolate these dependencies. As long as the sandboxes are
defined in terms of symbolic constants which are collected in a single file, porting the entire set of
sandboxes is a matter of redefining the symbolic constants in this file. To support this, MAPbox
reads a common specification file before it reads the specification file for a particular sandbox.
Appendix B presents an example of a common specification file for Solaris 5.6.

params: this command is used to define the parameters for a sandbox. This command can occur
only once in a specification and must precede all other commands.

3.2 Implementation details

Initialization: MAPbox starts by reading the sandbox specification file (specified on the command
line) and building the Policy structure. The Policy structure consists of eight components: (1)
read-list (list of files that can be read), (2) write-1list (list of files that can be written), (3)

"On Solaris 5.6, /usr/1ib/libsocket.so.1, /usr/lib/libnsl.so.1.s0.1 and /usr/lib/nss_compat.so.1.
80n Solaris 5.6, /etc/netconfig, /etc/nsswitch.conf and /etc/.name service door.

exec-list (list of binaries that can be exec’ed), (4) rename-1ist (list of files whose accesses are
to be redirected to some other file), (5) connect-1list (list of host/port combinations that the
confined application can connect to), (6) accept-1list (list of hosts that the confined application
can accept connections from and the ports that it can bind to), (7) env-1ist (list of environment
variables for the confined application), and (8) childbox (sandbox to be used for child processes,
if any). It first forks. The forked version sets up the environment for the application to be confined
by: limiting the environment variables to those specified in sandbox, setting umask to 077, limiting
the virtual memory use and datasize, disabling core dumps, changing directory to the application’s
write-home directory, and closing all unnecessary file descriptors. It then exec’s the application
to be confined. If no write-home directory is specified, a temporary directory is created in /tmp
and is deleted after the confined program terminates.

Interception mechanism: we use the /proc interface provided by Solaris 5.6 to intercept selected
system-calls. The /proc interface has been previously used by researchers for building class-specific
sandboxes [2, 10] and for user-level extensions to operating systems [1]. This interface allows us to
intercept system-calls both on their entry to and exit from the operating-system. It also provides
a structure containing the identity of an intercepted system-call, its arguments, whether it is an
entry or an exit, and the return value (if intercepted on exit). We intercept most system-calls on
their entry to the kernel to allow or deny access to resources; we intercept a few system-calls on
their return from the kernel to record a returned value (e.g., fork) or to control access to blocking
communication calls (e.g., accept for which the identity of the peer is known only when it returns).
MAPbox maintains a handler for every intercepted system-call (separate handlers are maintained
for entry and exit). When a system-call is intercepted, the corresponding handler is invoked. To
deny a system-call, the handler sets a field in the structure used to communicate between the kernel
and MAPbox. A denied system-call returns to the application with an error code of EINTR. For a
description of individual system-call handlers, please see [4].

Handling symbolic links: since Unix file-systems support symbolic links, simply checking the ar-
guments for file-system-related system-calls is not sufficient to implement file-system-related checks.
For example, /tmp/momletter.txt can be a symlink to /etc/passwd. To plug this hole, MAPbox
completely resolves each filename (using resolvepath()) before checking it against the Policy
structure.

Redirecting requests for sensitive files: to redirect requests for a sensitive file to a benign
dummy file, MAPbox resolves all filenames completely and compares them with the completely
resolved name of the sensitive file. If a match is found, it writes the name of the dummy file on
the stack of the confined process,? changes the register holding the system-call argument to point
to this string and allows the operation to proceed.

Confining child processes: MAPbox creates a separate copy of itself for every child of a confined
process. To achieve this, it intercepts the fork system-call on exit and extracts the process-id of
the newly created process. It then forks itself and attaches the child MAPbox process to the
newly created application process. Unless specified otherwise, the child of a confined application is
confined in the same sandbox as the parent. If, however, a different sandbox is specified (using the
childbox command), the instance of MAPbox corresponding to the child process intercepts the
subsequent exec system-call and reads the appropriate sandbox specification file.

Other system-calls: the sandbox specification language can specify the confinement require-

9This is implemented using pwrite() and ioctl()s on the /proc file corresponding to the confined application.

ments for most but not all system-calls. For the remaining system-calls, MAPbox implements an
application-independent policy. It does not intercept system-calls related to signals, threads and
virtual memory and relies on the security provided by the kernel. It also does not intercept system-
calls that perform read/write or send/receive operations — depending on the checks performed at
initializing operations such as open(), creat (), socket() etc. For others, it takes a conservative
approach and denies all system-calls that it does not know to be safe.

e it denies calls that can be invoked only with super-user privileges (e.g., mount, umount, plock,
acct, etc.).

e it currently denies calls to ac1() which gets/sets the access-control list for a file. We have
not yet seen these system-calls in traces.

e it denies all calls to door () except those used to query the host database.

e it allows fentl() calls with F_DUPFD, F_ DUP2FD (which return new file descriptors) and
F_GETFD, F_.SETFD (which read and write file descriptor flags) commands. It denies
fcntl() calls with other commands.

¢ it allows a small number of ioctl calls on stdin and stdout. It currently denies all other
ioctl calls. This call performs a variety of control functions on devices and streams. Properly
handling ioctl requires a good understanding of the individual devices and their controls.

Confining X applications: The X protocol has been designed for use by cooperative clients. Any
client application is able to manipulate or modify objects created by any other client application
run by the same user.'? This has been done for two reasons. First, it allows window managers to be
written as ordinary clients and second, it allows clients to communicate to implement cooperative
functionality such as cut-and-paste.

To confine X applications, we have developed Xbox, an X protocol filter [3]. Xbox has been
designed to be used in conjunction of a system-call-level sandbox such as MAPbox and Janus and
is to be interposed between an untrusted application and the X server. Before starting an untrusted
X application, MAPbox sets the DISPLAY environment variable to a socket that Xbox listens on
(unix:4 by default). It then makes sure that the confined application does not bypass Xbox by
denying direct connections to the X server.

Xbox snoops on all protocol messages and keeps track of the resources (windows, pixmaps, cur-
sors, fonts, graphic contexts and colormaps) created by the confined application. Xbox can be easily
extended to handle extensions to the X protocol. The current implementation handles the SHAPE,
MIT-SCREEN-SAVER, DOUBLE-BUFFER, Multi-Buffering, and XTEST extensions. The confined appli-
cation is allowed to access/manipulate only the resources that it has created and is allowed to read
limited information from the root window (the operations it allows on the root window are both
necessary and safe). All other requests regarding specific resources are denied (e.g., CreateWindow,
ChangeWindowAttributes, Get Window Attributes, InstallColorMap,Reparent Window, ChangeGC,
ClearArea, PolyPoint etc). In addition, the confined application is not allowed to query parts of the
window hierarchy it did not create and is allowed limited versions of some operations that change the
global state of the server (GrabKey, GrabButton etc). Other global operations (such GrabServer,
SetScreenSaver, ChangeKeyboardMapping etc) are denied. Finally, the confined application is not
allowed to communicate with other applications via the X server.

0The existing security mechanisms provided by the X server, i.e., the xhost-based mechanism and the magic-cookie
based mechanism cannot distinguish between multiple applications belonging to the same user.

entry := behaviorClass (arg , arg args) sandboxfile
behaviorClass := filter | transformer | ...

args =, args | , arg

arg := value | list | %a | %c | /* empty */

list := { values }

values := values , value | value

value := regexp | [num - num]

Figure 3: Syntax for .mapcap entries. The first two arguments in an entry are mandatory and
specify the read-home and write-home directories respectively. They can, however, be left empty.

filter(,) /fs/play/~acha/mapbox/sandboxes/filter.box
transformer(, ,%a,%a) /fs/play/~acha/mapbox/sandboxes/transformer.box
browser(,%c,*,80) /fs/play/~acha/mapbox/sandboxes/browser.box
game (,) /fs/play/~acha/mapbox/sandboxes/game.box

Figure 4: Sample .mapcap file. The arguments in the entry for browsers specify that: (1) a new
directory is created as the write-home directory and and that browsers are allowed to connect to
any host on port 80. The empty entries for filters and transformers specify that these applications
are not allowed to have either of read-home and write-home.

4 Configuration and administration

There are two ways in which MAPbox can be configured. First, by specifying which behavior
classes are allowed by the user in a .mapcap file; and second, by placing commands in a site-wide
specification file which MAPbox reads when it starts up.

Specifying acceptable behaviors: the list of behaviors acceptable to the user can be specified
in a .mapcap file. This file contains a sequence of entries consisting of (MAP-type, sandbox-file)
pairs. A MAP-type consists of a behavior class with values for all its parameters. The MAP-types
specify the behavior classes that the user is willing to allow and the acceptable combinations of their
parameters. A parameter can be specified using as a concrete value, a regular expression, a numeric
range, or a list. Multiple combinations of acceptable parameter values for a behavior class can be
specified using separate entries. Parameters for some behavior classes (e.g., transformer) include
command-line arguments that will supplied only when an application runs (for transformer, the
the input and output files). These parameters are specified by the meta-value %a. Some behavior
classes (e.g., browser) need a writable directory (to generate logs etc) but do not care where this
directory is located. For such classes, the write-home parameter can be specified as %c with the
semantics that a new directory is created for this purpose. The syntax for .mapcap entries is
presented in Figure 3. A sample .mapcap file is presented in Figure 4.

To check if an application is to be allowed to run, the MAP-type specified by the provider is
matched against entries in the .mapcap file. The rules for matching are:

e an empty argument can only be matched by an empty argument. This enforces the “no-

10

home-directory” specifications (e.g., filter(,)).
e %a and %c can only be matched by themselves.

e for all other arguments, the value provided by the application provider should not be more
general than the value in the .mapcap file. For example, browser (,%c,www.cs.ucsb.edu,80)
would match the .mapcap file in Figure 4 whereas browser(,%c,*,*) would not.

Implementing site-wide policies: as mentioned in Section 3, MAPbox reads a common spec-
ification file before it reads the specification file for a particular sandbox. In addition to making
sandbox specification files more portable, this feature can also be used to implement site-wide poli-
cies. The purpose of this feature is not to deal with malicious users — it is easy to bypass this
mechanism. Instead it is to rapidly respond to problems in a cooperative environment.

5 Evaluation of MAPbox

We evaluated MAPbox from two different perspectives. First, we evaluated the effectiveness of
the MAPbox approach for confining commonly used applications. For this, we tried to confine a
large set of commonly used applications using suitable class-specific sandboxes. The goal of these
experiments was to determine the effectiveness of this approach as well as of the class-specific
sandboxes we have developed. Second, we evaluated the efficiency of the MAPbox implementation.
For this, we ran experiments with interactive as well as non-interactive applications. The goal of
these experiments was to determine the overhead seen by real applications due to confinement.

5.1 Effectiveness of MAPbox

For these experiments, we selected 30 commonly used applications.!! We used the workloads devel-
oped for the resource requirements study to drive these experiments. For confining each application,
we used the sandbox corresponding to its intuitive behavior class (compiler for gcc, editor for
gnu-emacs, browser for Netscape etc). Of the 30 applications used in these experiments, 18
applications'? are able to complete their corresponding workloads while confined. The remaining
12 are unable to complete their workloads for one or more of the following reasons:

Lack of a pwd system-call: several applications try to determine the current working directory
by walking up the directory hierarchy. Figure 5 illustrates this behavior using a system-call trace
excerpt. MAPbox does not allow this operation since it denies all file-system calls with relative
paths. Three applications from our test suite, cc, gcc and gnu-emacs failed to complete their
workloads due to this limitation. Determining the working directory is central to the functioning of
many applications and is usually a safe operation by itself. However, operations on relative paths
are may not be safe. From this, we conclude that a pwd system-call would be a useful addition from
a confinement perspective.

Access to sensitive files: several applications are not able to function if they are denied access
to sensitive files. Of the applications in our test suite, two, lynx and Netscape did not complete

"The applications used these experiments were finger, telnet, ftp, lynx, Netscape, cc, gcc, javac, latex,
dvips, vi, pico, gnu-emacs, sh, ksh, tcsh, ghostview, pageview, pine, elm, xcalc, xclock, xterm, idraw, xfig, xv,
ical grep, compress and gzip.

12These were finger, telnet, ftp, latex, dvips, compress, gzip, grep, vi, pico, sh, ksh, xcalc, xclock, xterm,
ghostview, ical and idraw

11

stat64("./", 0xEFFFC620) =
stat64("/", O0xEFFFC588) =
open64("./../", O_RDONLY|O_NDELAY) =
fentl (3, F_SETFD, 0x00000001) =
fstat64(3, OxEFFFBC30) =
fstat64(3, O0xEFFFC620) =
getdents64(3, 0x0005A014, 1048) = 608
close(3) =
open64("./../../", O_RDONLY|O_NDELAY)
fcntl(3, F_SETFD, 0x00000001) =
fstat64(3, 0xEFFFBC30) =
fstat64(3, O0xEFFFC620) =
getdents64(3, 0x0005A014, 1048) = 280
close(3) =0

O O O wo o

O O O wo

Figure 5: System-call trace excerpt illustrating the pwd pattern.

their workloads due to this reason — 1ynx tried to access the password database via a door() call
whereas Netscape needed access to /etc/passwd and /etc/mnttab.

Attempt to run setuid root program: xterm failed trying to invoke pt_chmod which is a
setuid root program. We cannot trace setuid root programs using the /proc interface and do
not allow confined application to run such programs.

Attempt to scan $PATH: tcsh did not complete its workload as it tries to scan all the directories
in its PATH environment variable. Based on the Principle of Least Privilege, the sandbox for the
shell behavior class disallows this operation (since sh and ksh are able to work without this).

Attempt to perform prohibited X operation: xv failed when it tries to scan the entire window
hierarchy of the server; xfig failed trying to allocate a colormap not owned by itself; and pageview
failed trying to change an attribute of a window not owned by itself.

Attempt to access an unanalyzed device: currently, pine and elmfail as access to /dev/ticosord
is denied. We do not yet understand the operation of this device and, therefore, have denied access
to it.

5.2 Efficiency of MAPbox

For these experiments, we selected two sets of applications. The first set contained six commonly
used non-interactive applications. The second set contained three commonly used interactive ap-
plications. The applications and their corresponding workloads are listed in Table 2. We ran each
application with and without MAPbox and measured the difference in end-to-end execution time.
For each experiment, we also kept track of the time spent in MAPbox code. We repeated each ex-
periment five times and reported the average. We conducted these experiments on a lightly loaded
SUN Ultra-1/170 with 64 MB and Solaris 2.6. All files involved in these experiments were in the
OS file-cache. We used the Solaris high resolution timer gethrtime () for all measurements.
Table 3 presents the results for the non-interactive applications. We found that the overhead
caused by MAPbox for non-interactive applications varies greatly — from about 1% for gzip-1MB

12

| application | type | workload
gec non-interactive | compile 10 C files, about 5000 lines of code
latex non-interactive | compile 5 tex files, each about 300 lines
dvips non-interactive | convert a 50 page DVI file to postscript
ftp non-interactive | ftp 10 files of 32KB each
gzip-1MB | non-interactive | compress 4 1MB files
gzip-8KB | non-interactive | compress 32 8KB files
grep non-interactive | search gcc source for int, 182 files
vi interactive write a C program to print first n fibonacci numbers
pico interactive write a C program to print first n fibonacci numbers
ical interactive scan six months of events, add one event per month

Table 2: Workloads for the test applications. The two gzip workloads were selected to compare the
confinement overheads for processing a few large files and for processing many small files.

application | total | total time with | time in MAPbox | other overhead
time MAPDbox

gcc 14.58 | 20.49s (41%) 4.41s (30%) 1.58s (11%)
latex 2.80s | 3.06s (9%) 0.17s (6%) 0.09s (3%)
dvips 2.88s | 3.26s (13%) 0.11s (4%) 0.27s (9%)
ftp 1.99s | 2.32s (17%) 0.17s (9%) 0.16s (8%)
gzip-1MB 4.26s | 4.30s (1%) 0.01s (0.2%) 0.03s (0.8%)
gzip—-8KB 1.52s | 2.02s (33%) 0.23s (15%) 0.27s (18%)
grep 2.72s | 2.76s (1.2%) 0.02s (0.6%) 0.02s (0.6%)

Table 3: MAPbox overhead for the non-interactive applications. All percentages are with respect
to end-to-end execution time without MAPbox (second column). The time in the “other overhead”
column includes kernel overhead for intercepting system-calls as well as the cost of the context-
switches required to pass information between the kernel and MAPbox.

and grep to 41% for gcc. To determine the cause of this variation, we analyzed the system-call
traces for the test suite. We found that the applications that had large overhead due to MAPbox
made frequent calls to file-system-related system-calls (open/stat etc). To obtain a fine-grain
breakdown of this overhead, we added additional time probes in the handlers for these calls and
repeated the experiments. We found that most of this overhead (90% of the time spent in MAPbox)
is due to two operations: (1) the resolvepath operation which is used to safely handle symbolic links
by completely resolving a filename (65% of the time spent in MAPbox); and (2) reading the string
containing the filename from the confined process’s memory (25% of the time spent in MAPbox).
From this we conclude that the overheads are mostly due to operations that are necessary for
confinement. We would like to point out that the overheads for five out of the seven test cases were
below twenty percent which is not an unreasonable tradeoff for safe confinement.

It is difficult to precisely measure the MAPbox overhead for interactive applications since most
of the time is spent waiting or polling for human input. As an estimate, we measured the time spent
in MAPbox (for ical, an X application, we also measured the time spent in Xbox). Table 4 presents
the results. These results suggest that the time spent in MAPbox for interactive applications is a

13

| application | total time | time spent in MAPbox and Xbox |

vi 145s 102ms
pico 170s 100ms
ical 400s 600ms

Table 4: Time spent in MAPbox and Xbox for interactive applications.

negligible fraction of the total execution time. Furthermore, there was no perceptible degradation
of interactive response. To estimate the cost of additional context-switches due to intercepted
system-calls, we added a counter to MAPbox to count the number of intercepted calls and reran
the experiments. We then multiplied the number of intercepted calls by two times the cost of a
single context-switch (kernel to MAPbox, MAPbox to kernel). We used 1mbench [19] to determine
the cost of a single context switch. In all cases, the estimated overhead due to additional context-
switches was less than 10ms.

6 Potential limitations

We believe that the MAPbox approach provides a better tradeoff between configurability and ease
of use than previously proposed approaches. Nevertheless, it has several potential limitations. In
this section, we briefly discuss the potential limitations of this approach.

Portability: MAPbox depends on the ability to intercept system-calls for implementing a secure
reference monitor. Currently, only Solaris and Linux allow system-call interception in this manner.
As far as we know, this technique cannot be used for Windows 95/98. We are currently trying to
figure out if it is possible to implement similar functionality in Windows NT.

Applications limited to single behavior: the MAPbox approach limits each application to one
of the behavior classes. Many applications, however, are able to exhibit multiple behaviors. As
yet, we do not know how to safely allow a single application to simultaneously belong to multiple
behavior classes. In specific cases, it may be possible to create customized classes that allow a
specific pair of behaviors. In general, however, we believe this is an inherent trade-off and that not
all applications can be securely confined in all their generality. In particular, applications such as
gnu-emacs which contain a powerful extension language.

Confining setuid root programs: the system-call interception mechanism used by MAPbox
does not work for setuid root programs. This is a necessary restriction as allowing a user-level
process to intercept the system-calls of a setuid root program would provide a trivially easy way
to become root.

Lack of standardized behavior classes: given that individual end-users are allowed (though not
required) to create and configure behavior classes and the corresponding sandboxes, it is conceivable
that everyone defines different classes or uses different names for the same classes resulting in
configuration chaos. While this is a possibility, we believe that it is unlikely to happen. As evidence,
we point to the experience with MIME-types which have a similar potential for configuration chaos.
Instead of a “tower of babble”, the set of MIME-types used by most users has converged to a fairly

14

stable set.

Need for additional provenance: while MAPbox can allow users to confine applications to
individual behaviors, it has no way of ensuring that they perform this behavior in a manner that
is acceptable to the user. For example, recent events have shown that documents generated by
Microsoft applications can have a unique user-specific ID embedded in them — which may or may
not be desirable behavior from the point of view of the user. We believe that digital signatures
can provide additional provenance that might help make such distinctions in some cases. We are
considering ways in which digital signatures could be incorporated into the MAPbox approach.

7 Conclusions

In this paper, we have presented the design, implementation and evaluation of MAPbox, a confine-
ment mechanism that retains the ease of use of application-class-specific sandboxes while providing
significantly more configurability. Based on a study of 50 commonly used applications, we have
been able to identify fourteen behavior classes — filter, transformer, compiler, editor, viewer,
download, upload, mailer, browser, info-provider, server, shell, game, applet. These classes
have intuitive meaning and their resource requirements can be differentiated. We do not claim that
this classification is either unique or complete. Our goal in identifying these classes was to demon-
strate that application behaviors and the corresponding resource requirements can be grouped into
clean categories. We expect this classification to be refined based on further experience.

To evaluate the effectiveness of MAPbox, we tried to confine a set of 30 commonly used ap-
plications using suitable class-specific sandboxes. We found that 18 of them ran successfully. of
the 12 that did not, 10 failed because they make potentially unsafe accesses and only two failed
because of configuration problems (access to a device that we have not yet analyzed). From this, we
conclude that the approach of using behavior-class-specific sandboxes is fairly effective in confining
commonly used applications.

To evaluate the efficiency of MAPbox, we ran experiments with interactive as well as non-
interactive applications. We found that the overhead caused by MAPbox for non-interactive appli-
cations can vary greatly — from about 1% for gzip and grep to 41% for gcc. On the other hand,
the time spent in MAPbox for interactive applications is negligible. Also, in our experiments, there
was no perceptible degradation of interactive response. From this, we conclude that the overhead
of confinement is likely to be acceptable.

Acknowledgments

We would like to thank the authors of Janus for making their implementation available. While
MAPDbDox has been implemented anew and contains much functionality not provided by Janus, we
benefited greatly from reading their code as well as their lucid description in [10]. We would also
like to thank Paul Kmiec for suggesting the use of pwrite() to write a string into the stack of a
confined process.

References

[1] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. Extending the operating system at the
user level: the Ufo global file system. In Proceedings of the 1997 USENIX Annual Technical
Conference, 1997.

15

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Alexandrov, P. Kmiec, and K. Schauser. Consh: A confined execution environment for in-
ternet computations. Available at http://www.cs.ucsb.edu/~berto/papers/99-useniz-consh.ps,
Dec 1998.

Anonymous. The Xbox distribution. Available at _.
Anonymous. __. Technical report, Dept of Computer Science, University of __, 1999.

Caldera security advisories. Available at
http://www. calderasystems.com/news/security/index.html, April 1999.

CERT/CC Advisories 1988-1999. Available at http://www.cert.org/advisories, April 1999.

G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control for mobile code. In
Proceedings of the Fifth ACM Conference on Computer and Communications Security, 1998.

J. Fritzinger and M. Mueller. Java security. Technical report, Sun Microsystems, Inc, 1996.

T. Gamble. Implementing execution controls in Unix. In Proceedings of the 7Tth System Ad-
ministration Conference, pages 237-42, 1993.

I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure environment for untrusted
helper applications: confining the wily hacker. In Proceedings of the 1996 USENIX Security
Symposium, 1996.

L. Gong. New security architectural directions for Java. In Proceedings of IEEE COMP-
CON’97, 1997.

The Happy99 worm. Available at http://www.symantec.com/avcenter/venc/data/-
happy99.worm.html, 1999.

Information on Back Orifice and NetBus. Available at hittp://www.symantec.com/avcenter/-
warn/backorifice.html, 1999.

T. Jaeger, A. Rubin, and A. Prakash. Building systems that flexibly control downloaded
executable content. In Proceedings of the Sizth USENIX Security Symposium, 1996.

P. Karger. Limiting the damage potential of the discretionary trojan horse. In Proceedings of
the 1987 IEEE Syposium on Research in Security and Privacy, 1987.

M. King. Identifying and controlling undesirable program behaviors. In Proceedings of the
14th National Computer Security Conference, 1992.

C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities in privileged pro-
grams by execution monitoring. In Proceedings. 10th Annual Computer Security Applications
Conference, pages 134-44, 1994.

N. Lai and T. Gray. Strengthening discretionary access controls to inhibit trojan horses and
computer viruses. In Proceedings of the 1988 USENIX Summer Symposium, 1988.

L. McVoy and C. Staelin. lmbench: portable tools for performance analysis. In In Proc. of
1996 USENIX Technical Conference, Jan 1996.

16

[20] N. Mehta and K. Sollins. Extending and expanding the security features of Java. In Proceedings
of the 1998 USENIX Security Symposium, 1998.

[21] The Melissa virus (CERT Advisory CA-99-04-Melissa-Macro-Virus). Available at
http://www.cert.org/advisories/CA-99-04-Melissa-Macro- Virus.html, 1999.

[22] F. Schneider. Enforceable security policies. Technical report, Dept of Computer Science,
Cornell University, 1998.

[23] L. Stein. SBOX: put CGI scripts in a box. In Proceedings of USENIX’99, 1999. To appear.

[24] K. Walker, D. Sterne, M. Badger, M. Petkac, D. Shermann, and K. Oostendorp. Confining
root programs with domain and type enforcement (DTE). In Proceedings of Sizth USENIX
Security Symposium, 1996.

[25] D. Wallach, D. Balfanz, D. Dean, and E. Felten. Extensible security architecture for Java. In
SOSP 16, 1997.

[26] D. Wichers, D. Cook, R. Olsson, J. Crossley, P. Kerchen, K. Levitt, and R. Lo. PACL’s: an
access control list approach to anti-viral security. In USENIX Workshop Proceedings. UNIX
SECURITY II, pages 71-82, 1990.

A Grammar for the sandbox description language

command := path_c | rename_c | connect_c | accept_c | putenv_c | childbox_c
path_c := path permission access_modes file_list
rename_c := rename filel file2
connect_c = connect permission protocol ip_addr_list
| connect permission display
accept_c = accept permission protocol ip_addr_list
putenv_c := putenv name_val list | putenv DISPLAY
childbox_c¢ := childbox class
permission := allow | deny

access_modes
access_mode

access_modes , access_modes | access_mode
read | write | exec

file_list = filename file list | filename

protocol = tcp|udp | *

ip_addr_list = ip_addresses : port_addr
ip.addresses := ip.addr , ip_addresses | ip.addr | *
port_addr := port_num / port_mask | port_num | *

Note that the define and params commands are not included in the above description. These
commands are implemented as macros in a preprocessing step.

17

B A common specification file for Solaris 5.6

define _COMMON_LD_LIBRARY_PATH /usr/openwin/lib:/usr/ucblib
define _COMMON_READ /dev/zero /usr/lib/locale/*

/dev/zero is a device file used for mmap’s
define _COMMON_WRITE /dev/zero

this is true in our environment
define _COMMON_TERM xterm

redirect X requests to the Xbox filter
define _COMMON_DISPLAY unix:4

define _COMMON_LIBS /usr/lib/libthread.so.1 /usr/lib/1ibICE.so.6\\
/usr/1ib/1ibSM.so.6 /usr/lib/libw.so.1 /usr/ucblib/* \\
/usr/1lib/libc.so.1 /usr/lib/libdl.so.1 /usr/lib/libintl.so.1\\
/usr/1lib/libelf.so.1 /usr/lib/libm.so.1 /usr/lib/liballoc.so.1\\
/usr/1lib/libmp.so.2 /usr/1lib/libmp.so.l /usr/lib/libsec.so.1

define _X_FILES /usr/openwin/lib/* /usr/openwin/share/*\\
/usr/openwin/bin/*

define _NETWORK_FILES /etc/netconfig /etc/nsswitch.conf\\
/etc/.name_service_door

define _NETWORK_LIBS /usr/lib/libsocket.so.l1 /usr/1lib/libnsl.so\\
/usr/lib/nss_compat.so.1

C Sandbox example

sandbox spec for the browser class

the browser sandbox takes four arguments -- the read and write
home directories, the list of hosts it is allowed to connect to
and the port(s) it is allowed to comnnect to.

params _READ_HOME _WRITE_HOME _HOSTLIST _PORT

set up the env variables

putenv PATH=$_READ_HOME

putenv TERM=$_COMMON_TERM

putenv LD_LIBRARY_PATH=$_COMMON_LD_LIBRARY_PATH:$_NETWORK_LIBS
putenv DISPLAY=$_COMMON_DISPLAY

_COMMON_READ and _COMMON_LIBS are accessible to all apps
path allow read $_COMMON_READ $_COMMON_LIBS $_READ_HOME

_COMMON_WRITE can be written by all (in this case /dev/zero)

downloaded files are to be in _WRITE_HOME
path allow write $_COMMON_WRITE $_WRITE_HOME

18

browsers are allowed to read X data files and libs
path allow read $_X_FILES

browsers are allowed to read network config files and libs
path allow read $_NETWORK_FILES $_NETWORK_LIBS

browsers are allowed to connect to all hosts in the argument
connect allow tcp $_HOSTLIST:$_PORT

broswers are allowed to connect to the X server
connect allow display

all exec’ed children of browsers must be viewers
childbox viewer

browsers are not allowed to access /etc/passwd
rename /etc/passwd /tmp/dummy

19

