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Abstract

Numerous techniques exist to augment the security
functionality of Commercial Off-The-Shelf (COTS) ap-
plications and operating systems, making them more
suttable for use in mission-critical systems. Although
individually useful, as a group these techniques present
difficulties to system developers because they are not
based on a common framework which might simplify in-
tegration and promote portability and reuse. This paper
presents techniques for developing Generic Software
Wrappers — protected, non-bypassable kernel-resident
software extensions for augmenting security without
modification of COTS source. We describe the key el-
ements of our work: our high-level Wrapper Defini-
tion Language (WDL), and our framework for config-
uring, actwating, and managing wrappers. We also
discuss code reuse, automatic management of exten-
sions, a framework for system-building through com-
position, platform-independence, and our exrperiences
with our Solaris and FreeBSD prototypes.

1 Introduction

Commercial Off-The-Shelf (COTS) applications and
operating systems are attractive to developers of mis-
sion critical systems because of their low cost. How-
ever, these COTS products typically provide only
commercial-grade assurance, and may lack security fea-
tures sufficient to meet mission requirements. A num-
ber of efforts have augmented the security functionality
and assurance of COTS products by injecting layers of
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software into the interfaces between the COTS oper-
ating systems and their applications, or between the
applications themselves. Once injected, these layers of
software observe and modify the data passing through
the interfaces, injecting and processing data for addi-
tional security protocols (encryption, authentication)
or identifying data that is known to cause harm (ac-
cess control, intrusion detection). In some cases, the
application source must be modified to make the in-
jected software effective, decreasing the savings associ-
ated with the use of Off-The-Shelf software.

The different kinds of security functionality added
by these efforts are nearly as numerous as the ef-
forts themselves. For example, a number of efforts
add application-level access control and/or auditing
to servers in the context of application-gateway fire-
wall proxies [1], Wietse Venema’s TCP Wrappers [25],
and CORBA [30, 31]. DTE [2] and Janus[15] add
mandatory access control (MAC) functionality at the
system-call interface of COTS operating systems. Ker-
beros [29] and the Secure Socket Layer [34] provide
the means to augment applications which communi-
cate over the network with cryptographic functional-
ity. Still other efforts focus on adding instrumentation
to COTS operating systems and server applications to
support intrusion detection [17, 23, 20, 21, 11, 12, 22],
maintain synthetic jail environments to contain intrud-
ers [9], or both [32].

Each of the efforts listed above provides a useful
solution in i1ts own problem domain, but is generally
limited in scope to a single kind of security augmenta-
tion, be 1t access controls, authentication protocols, or
intrusion detection. In order to provide security, devel-
opers seeking to construct mission critical systems from
COTS components may therefore find themselves faced
with the task of integrating, assuring, and managing
several of the above techniques, each implemented with
its own individual mechanism. Additionally, develop-
ment of new security enhancements is extremely ex-
pensive due to the almost-total lack of abstraction:
security enhancements typically operate on low-level



data structures such as system call parameters, IP mes-
sages, and network connections, and in many cases are
system-specific.

This paper presents a set of techniques, and a pro-
totype system, for reducing the development burden
of security enhancements for COTS software compo-
nents, for building assurance that separate enhance-
ments function properly when composed, and for sup-
porting reuse of already-developed enhancements. The
emphasis of our work is on practical results; we have
therefore formulated five key goals for maximizing the
impact of our work:

abstraction Security enhancements should be insu-
lated, to the extent possible, from low-level system
details. Additionally, it should be possible for an
enhancement to work with a system’s API with-
out the author having to enumerate all relevant
(or worse, all irrelevant) system APIs. Tt should
also be possible to design some enhancements to
work without change on multiple operating system
platforms.

ease of configuration Security enhancements
should be easy to install, configure, use, and

uninstall.

nonbypassability Software running under a security
enhancement should not be able to circumvent the
security policy enforced by the enhancement (e.g.,
mediation, auditing). This implies that security
enhancements are protected from attacks by soft-
ware running under their control.

compatibility Security enhancements must work
with widely-used operating systems (e.g., Sun So-
laris, Windows NT, free UNIXs) and applications
(e.g., web browsers, compilers, office suites).

performance In most cases, the user should not per-
ceive a performance loss due to enhancements.
In particular, lightweight security enhancements
(such as access control and some intrusion detec-
tion techniques) should exact almost no perfor-
mance penalty.

We have approached these goals by combining three
key techniques: a language for specifying security en-
hancements, a framework for controlling enhancements
and their interactions, and a Loadable Kernel Module
(LKM) architecture similar to that found in SLIC [14]
for providing efficient and protected kernel-space en-
hancements on COTS systems.

Our main abstraction is the Generic Software Wrap-
per, or “wrapper.” Wrappers are small state machine
specifications. During run-time, state machines based

on these specifications, called “wrapper instances,”
are associated with processes executing COTS appli-
cations. We express wrappers in Wrapper Definition
Language (WDL), which is a superset of the C pro-
gramming language [19]. Due to the expressiveness of
C, WDL can express wrappers with a broad range of
functionality. In addition to providing new language
constructs tailored to the task of wrapping, WDL also
provides a number of constructs to help make wrappers
independent of operating system platform-specific de-
tails. This expressiveness and hiding of details make it
possible to use wrappers as a common mechanism for
implementing the security extensions described above
in a coordinated and somewhat platform-independent
way.

We have discovered that it is often useful for a sys-
tem to deploy a number of wrappers simultaneously
(e.g., each wrapper may implement a “mini-policy”
such as access control for specific resources or intrusion
detection). Additionally, it is often important to tar-
get specific wrappers to specific programs or users, thus
focusing control on points of weakness instead of apply-
ing all controls globally (e.g., a wrapper might restrict
a web server that is remotely accessible, but not affect
any other programs or processes). To address these
issues, we have developed a Wrapper Life Cycle frame-
work for wrapper management and a model for wrap-
per composition. The Wrapper Life Cycle uses a small
configurable rule-base to automatically manage the
run-time relationships between wrapper instances and
processes executing COTS applications. By handling
the underlying details, the Wrapper Life Cycle allows
wrappers to be managed through a simple high-level in-
stall/activate/duplicate/deactivate/uninstall interface.
Working with the Wrapper Life Cycle, our wrapper
composition model allows multiple wrapper instances
to concurrently wrap a single process, each reacting in
turn to the process’s system calls. In addition to such
“passive” composition, we are also developing support
for “active” composition, in which one wrapper pro-
duces events that another wrapper can listen for. We
discuss active composition in more detail in section 3.

Our strategy for providing protected and efficient
enhancements for COTS systems is to run wrappers in
kernel mode, and to provide their execution environ-
ment in an LKM. Figure 1 shows the general archi-
tecture of our Solaris 2.6 and FreeBSD 2.2 prototypes.
(We are also developing a Windows N'T prototype with
a somewhat different architecture.) Our Wrapper Sup-
port Subsystem (WSS) is implemented as an LKM to
permit dynamic installation. The WSS tracks running
processes and evaluates “activation criteria” at appro-
priate times to activate new wrapper instances for pro-
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Figure 1. Architecture of the Generic Software Wrappers prototype on Solaris and FreeBSD.

cesses (e.g., the middle process in Figure 1 is wrapped).
These wrapper instances “wrap” their processes by in-
tercepting some or all of the system calls they make.?
This interception effectively puts the wrappers in com-
plete control of their processes’ interactions with the
operating system and with other processes; the wrap-
pers impose no context-switch overheads and therefore
are efficient, and wrappers execute in kernel space and
are thus protected. Wrapper instances generally op-
erate synchronously with the processes they wrap, ex-
ecuting just before and/or after the system calls in-
dicated by their specification. (The Solaris prototype
has not yet been made aware of threads, and assumes
all system calls made by a given process originate from
a single thread). For each system call, wrappers may
observe and/or modify both the parameters specified
by the caller and the values returned by the operating
system.

Wrappers appear to provide an extremely flexible
and powerful ability to tailor system characteristics to
fit the needs of a particular environment, and to pro-
vide security using commercial operating systems and
commercial applications. Section 4 outlines several
strategies for adding security functionality to COTS
operating systems and applications with Wrappers,
and section 5 discusses several wrappers that we have
implemented with our prototype. Based on our expe-
rience with building a FreeBSD and a Solaris wrap-
per prototype system, we believe that wrappers can

2 Although it is imprecise, we often use the term “wrapper”
instead of “wrapper instance” whenever the context is clear.

be implemented using any UNIX system that sup-
ports dynamic loadable kernel modules, such as Solaris,
FreeBSD, and Linux. Given sufficient documentation
on the kernel interfaces exported to loadable kernel
modules, access to operating system source is helpful,
but not required. Additionally, we believe that wrap-
pers can be implemented on Windows NT. While a
wrapper approach must assume that underlying oper-
ating system mechanisms function as advertised, 1t has
the ability to guard them from possibly damaging input
(e.g., attacks on weak or overly privileged portions of
a system’s APT), thus increasing their overall strength.
The wrapper approach, therefore, contrasts but is com-
plementary with, that of Trusted Systems[26] such as
Trusted XENIX[27] and Trusted Mach[7], which are
built from the ground up with support for enhanced
security.

In the following sections, we present our central
wrappers concepts, several applications for wrappers,
design and implementation issues, capabilities and lim-
itations, and performance. Sections 2 and 3 present our
wrapper language and lifecycle model. Section 4 dis-
cusses some applications of wrappers to security, and
limitations of the techniques. Section 5 covers design
and performance issues. Finally, sections 7 and 8 dis-
cuss related work and our conclusions.

2 Wrapper Definition Language

A wrapper is a state machine that listens for spec-
ified events and, if it “hears” an event, takes actions



(A)

int open(const char #*path, int flags, mode_t mode)

ssize_t read(int d, void *buf, size_t nbytes)
int reboot (int howto)

(B)

int{fdret,VAL_RET}
int{sizeret,VAL_RET} read{fdop}(int fd{fd},

open{fileop, fdop}(char *path{path,nterm}, int flags, int mode{model});

char #buf{copy(buf,nbyte), iobuf, outl},
u_int nbyte{nbytes});

int{STD_RET} reboot{rootop}(int opt);

Figure 2. (A) C function prototypes of the C library functions corresponding to FreeBSD’s open, read,
and reboot system calls and (B) the system calls’ characterizations.

such as:

augmenting the event by adding additional func-
tionality to the event, such as encrypting a buffer
or performing intrusion detection analysis on the
event;

transforming the event by converting the event
into one or more substitute events, for example,
by rewriting a system call event’s parameters, or
by using alternative system calls instead of the re-
quested system call; or

denying the event by preventing the execution of
the event, and returning an error code.

We have designed our language, WDL, to make
these tasks as simple as possible by allowing wrappers
to easily refer to collections of system calls and by in-
sulating the wrapper writer from low-level details such
as parameter copying. A key element of our approach
is to augment a system call API with semantic infor-
mation that allows a wrapper to concisely reference
portions of a system’s interface without being mired in
the details of a large API. An augmented, or charac-
terized, interface binds attributes to interface elements;
wrappers then can use these attributes to express con-
cisely the functions of the interface to be intercepted
and the conditions under which they should be inter-
cepted. Additionally, these attributes provide the WSS
the information it needs to copy and replace parame-
ters or the return value, and also provide wrappers with
convenient ways to refer to values being passed through
an interface.

The majority of the abstraction provided by the
Generic Software Wrappers prototype is derived from

its use of characterized system call interfaces. In addi-
tion to substantially reducing the complexity facing a
wrapper writer, a characterized system interface allows
some wrappers to be portable between platforms when
the APIs of the platforms can be described using the
same attributes.

The characterized system call interface consists of
the C language prototypes of the functions provided
by the actual system call interface augmented with a
standard set of tags. These tags map the platform-
specific aspects of the function prototype to higher level
WDL abstractions which are identical across platforms.
Figure 2A shows the prototypes for the open, read,
and reboot system calls from the FreeBSD system call
interface[13]. Figure 2B shows the corresponding sec-
tion of the system call interface characterization used
by the FreeBSD prototype for comparison. The char-
acterization demonstrates the abstraction provided by
three groups of tags:

return value tags: The first group of tags consists of
those following the function return values. These
tags provide the wrapper writer consistent, named
access to return values. For example, since all
system calls returning a file descriptor are labeled
with fdret, the return value for all of them can
be accessed in a wrapper as $fdret. These tags
also indicate semantics associated with the return
This al-
lows the wrapper writer to indicate that a sys-
tem call should fail using abstract, WDL-based
syntax which the WDL compiler converts to the
appropriate, system-specific error return. For ex-

value with respect to error conditions.

ample, in the bsd noadmin and noadmin wrappers
in Figure 3, failure (WR_DENY) and bad permission
(WR_BADPERM) will be translated to the appropri-



(A)

#include "../../wr.include/platform.ch"

wrapper hello_open {
bsd: :op{open}{
wr_log("hello open %s\n'", $path);
}

(B)

#include "../../wr.include/platform.ch"

wrapper hello_path {
*::pattr{path}{
wr_log("hello path %s\n", $path);
}

(©)

#include "../../wr.include/platform.ch"

(D)

#include "../../wr.include/platform.ch"

wrapper noadmin {
*::opattr{rootop} pre {
return WR_DENY | WR_BADPERM;
};

wrapper bsd_noadmin {
bsd: :op{mount || unmount || ptrace ||
quotactl || acct || swapon ||
mknod [l adjtime || ktrace ||
reboot || settimeofday} pre {
return WR_DENY | WR_BADPERM;

};

Figure 3. Example wrappers hello_open (A), the wrapper equivalent of “Hello World”, hello_path
(B), a slightly more general “Hello World” example, bsd_noadmin (C), a wrapper that denies certain
administrative system calls on FreeBSD, and noadmin (D), a portable version of bsd_noadmin.

ate error return (including the return value and
the setting of the global errno variable, if appro-
priate) based on the tags.

function name tags: The second group of tags con-

sists of those following the function names. These
tags divide the functions provided by the system
call interface into sets based on the functions be-
havior. For example, in the figure, both open and
read are marked with the fdop tag, identifying
them as functions that operate on file descriptors.
When wrappers refer to functions in the system
call interface by these abstract tags rather than by
name, they achieve portability between platforms
whose function names may be different.

parameter tags: The third group of tags consists of

the tags following the function’s formal param-
eters. Some of these tags divide the parame-
ters into sets based on their purpose, in a man-
ner similar to the function name tags described
above. For example, the path parameter of the
open function is marked with the path tag, iden-
tifying it as a parameter representing a path in
the filesystem. Wrappers interested in filesys-
tem paths can achieve portability by selecting sys-

tem calls containing the parameter attribute path
without naming the system calls directly. They
can access the path parameter in system calls
without concern for the location of the path in the
parameter list, simply by using the $path vari-
able. Other parameter tags indicate to the WDL
compiler how parameters containing complex data
types should be manipulated. For example, the
tag copy(buf,nbyte) indicates that the length of
the buffer parameter buf is dependent on the value
of the nbytes parameter; the WDL compiler will
automatically copy the parameter based both on
the type of the parameter (in this case a charac-
ter) and the length in units of that type. WDL
provides features for copying complex data struc-
tures (e.g., arrays of records containing pointers)
and also data structures whose types are actually
determined at runtime (and are void#* in the inter-
face). Wrappers can achieve increased reliability
by taking advantage of the Wrapper Support Sub-
system’s ability to transparently manipulate com-
plex data types.

Figure 3 contains the WDL source for four simple

wrappers that illustrate how wrappers are structured
and how they can achieve abstraction. The first is the



hello_open wrapper (figure 3A), which is the wrapper
equivalent of the archetypical minimalist “hello world”
program. This simple wrapper illustrates three char-
acteristics of every wrapper:

It references a characterized interface by in-
cluding a file containing a characterized version
of the system’s API.

It listens for events by specifying an event subsys-
tem, in this case bsd for the BSD system calls,
and specifies events within the subsystem to inter-
cept. In the case of hello_open, the wrapper lis-
tens only for the event named “open.” Using the
attributes established by the characterization of
the interface, wrappers may also listen for events
having specified attributes and unions of such sets
of events.

It takes an action by augmenting, transforming, or
denying intercepted events. Hello_open augments
the events it intercepts by simply generating a log
message (and referencing the parameter value us-
ing the attribute from the characterized interface).
By default, a wrapper gains control before an event
(e.g., system call) occurs, however WDL also pro-
vides a keyword, post, that can be used to gain
control after an event occurs to allow wrappers to
do post-processing of events (e.g., translating data
returned to the caller).

Figure 3B shows a slightly more general wrapper,
hello path: this wrapper uses WDL’s wildcard ca-
pabilities to work for any event subsystem (e.g., any
operating system), and uses the generic path attribute
(via the pattr keyword, which stands for “parameter
attribute”) from the characterized interface to inter-
cept any system call that uses a pathname parameter.
This simple wrapper, which just logs pathnames that
are passed through a system interface, will run on any
system that has been characterized with a path param-
eter attribute.

Figure 3C and 3D show two versions of a simple
wrapper that provides useful access control function-
ality. This wrapper addresses the fact that many root
processes need the root privilege in order to access user
files or to allocate system resources, but do not per-
form administrative functions, such as changing swap
partitions or making new device special files. An at-
tack on these processes can be devastating because the
attacker then has administrative access to the system.
The bsd_noadmin simply prevents the use of key system
APIs that daemons such as web servers, FTP servers,
and firewall proxies do not need and should never use.
The bsd_noadmin wrapper simply listens for any of a

specified set of events and, if they occur, denies them.
While this is a simple wrapper, it contains a significant
amount of system-specific detail and is not portable.
The noadmin wrapper, in contrast, takes advantage of
the characterization of the system API to intercept the
same operations (or their equivalents) on any wrapper-
supporting system.

The noadmin wrapper demonstrates simple and use-
ful static access control. Many wrappers, however
will be more complex, and, in particular, will re-
quire the ability to conveniently access stored config-
uration information, generate and efficiently store in-
termediate results, and produce output that can be
easily accessed by administrators but is otherwise pro-
tected. To accommodate these requirements, WDL in-
cludes a lightweight, persistent, built-in database sys-
tem that allows wrappers to store wrapper instance-
specific, wrapper-specific, and global information very
efficiently. WDL’s database features use an SQL-like
syntax, however operations on the WDL database are
as efficient as local function calls because the database
resides in kernel memory with the wrappers and be-
cause the database is not transactional: it does not im-
plement traditional (and slow) database rollback and
recovery features.

Figure 4 shows a wrapper, dbcallcount, that il-
lustrates how wrappers can conveniently access and
generate data. The dbcallcount wrapper uses the
WDL database to create a table of system calls that
a wrapped process calls, and to count how many times
each system call occurs. Using the DBTABLE keyword,
dbcallcount declares a table where each row has two
columns, a name and a count. When the wrapper
is activated for a process (we cover wrapper activa-
tion and management in detail in section 3), the WSS
calls the wr_activate() wrapper lifecycle function and
dbcallcount creates a new table for the process. Sim-
ilarly, when the wrapper is duplicated (via fork() in
UNIX), the WSS calls the wr_duplicate() lifecycle
function and dbcallcount creates a new table for the
new process; and, when a process terminates, the WSS
calls the wr_deactivate() lifecycle function, and the
dbcallcount wrapper deletes the table. The core of
the dbcallcount wrapper is dedicated to catching and
recording system calls. Using wildcards, the wrapper
catches every system call. For each intercepted system
call, the wrapper uses an SQL command to update the
database (the special variable $$ is the name of the
system call that the wrapper intercepted), and adds a
new database record if this is the first time the system
call has occurred.

Dbcallcount uses the WDL database in a fairly sim-
ple manner, however this is still sufficient to make the



#include "../../wr.include/platform.ch"
#include "../../wr.include/libwr.h"

wrapper dbcallcount {

DBTABLE callcountTable {

};

char(20) key name;
int count;

callcountTable callcount;

wr_activate() { /* create the table. */

}

wql { create table callcount; };

wr_duplicate() { /* create the table. */

X

wql { create table callcount; };

wr_deactivate() { /* Drop the table. */

}

wql { drop table callcount; J};

:op{*} pre { /* Catch syscalls */

int retVal;
/* If syscall in db, ++ count. */
/* If not, add call to the db. */
retVal = wql {

update callcount

set .count = .count + 1
where
.name = $$;
};
if (retVal <= 0) {
wql {
insert into callcount values
(88, 1);
};
}

Figure 4. The portable dbcallcount wrapper
keeps a count of the number of invocations
of each system call in the built-in persistent
database.

wrapper’s results available to administrators and to
give the wrapper a reliable and high performance alter-
native to custom data structures for state management.
In addition, the database provides a standardized and
persistent data interchange format between wrappers:
one wrapper can consume data generated by another
simply by accessing the database.

Writing wrappers can be a complex, error-prone
task. The key goal for WDL is to reduce complexity
as much as possible while encouraging code reuse. Our
wrappers have gained significant leverage on this prob-
lem through the use of characterized interfaces that
allow semantic information of an interface to be reused
in many different wrappers, allow wrappers to be much
more concise, and also much more abstract. Addition-
ally, the inclusion of a lightweight database into WDL
has significantly improved our ability to write wrap-
pers that generate persistent results, and also to moni-
tor the behaviors of wrappers by viewing the database
externally.

3  Wrapper Life Cycle

In order to intercept COTS component interactions
and impose wrapper-supplied security policies, wrap-
pers must relate at runtime to execution context struc-
tures such as UNIX processes. Additionally, wrappers
require a control framework for managing their config-
uration, activation, and termination.

Typical systems create and terminate processes fre-
quently. Depending on the applications running, large
trees of processes may be spawned over a short pe-
riod of time. If these processes are to run wrapped,
the rules for associating wrappers with new processes
must be simple, and the mechanisms used to relate
wrapper-directed processing to the affected processes
must also be simple. On one extreme, a single active
wrapper might relate to an entire set of running pro-
cesses; this approach, however, imposes a heavy burden
on the wrapper to maintain context information on be-
half of the different processes. On the other extreme,
a wrapper might relate to only a single process: this
would require a separate wrapper to be specified for
each potential process, which is probably not feasible.
We have adopted a third “middle” approach, which
is to specify a single wrapper so that it may be used
for a group of processes, and, at runtime, to activate
an “instance” of the wrapper for each active process.
Specified in this manner, wrappers are templates for
creating wrapper instances which execute one-to-one
with the processes they wrap. Each wrapper instance
thus maintains context information specific to the pro-
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cess 1t wraps and the wrapper template expresses logic
common to all instances and any information required
to coordinate the wrapper instances.

Our Wrapper Life Cycle framework identifies five
key events in the life of a wrapper, marking the points
in time where a wrapper may (or sometimes must) act
to implement it’s behavior relative to the dynamic pro-
cess hierarchy. Figure 5 shows the state of a system’s
WSS and process hierarchy as a wrapper traverses the
Life Cycle.

Initial state Initially, shown in 5A, no wrappers are
loaded and, for simplicity, there is a single process
owned by root.

Wrapper Installation Figure 5B shows the state of
the system after an administrator (or a privi-
leged program) has installed the wrapper Foo, and
has specified an “activation criteria” for activating
Foo. Activation criteria are boolean expressions
that a wrapper system evaluates when programs
are loaded: activation criteria determine if each
program is wrapped, and which wrapper applies
to each wrapped program. When the WSS loads
a wrapper, it runs the wrapper’s wr_install life
cycle function (if one is specified in the wrapper),
thus giving the wrapper an opportunity to initial-
ize the database for wrapper instance activation.

Wrapper Activation Figure 5C shows the system
state after a program load (execve() in UNIX)
has matched the activation criteria: the running
program (process p1) runs under the control of the
Foo wrapper. Before the program begins to exe-
cute, the WSS calls the wrapper’s wr_activate
life cycle function to perform any process-specific
setup.

Wrapper Duplication Figure 5D shows the system
state after the wrapped process has duplicated
itself (fork() in UNIX). Wrappers are inherited
across duplications; before the child process starts
to run, the WSS calls the wrappers wr_duplicate
life cycle function, if any, to allow the wrapper to
initialize process-specific state (e.g. process-local

WDL tables).

Wrapper Deactivation Figure 5E shows the system
state after the wrapped process has exited, thus
calling the wrapper’s wr_deactivate life cycle
function, which allows the wrapper to perform any
required cleanup of its local state and to commit
any local results to the database.

Wrapper Uninstallation Finally, figure 5F shows
the system after the Foo wrapper has been unin-

stalled. As with the other life cycle functions,
uninstallation calls the wrapper’s wr_uninstall
life cycle function, thus giving the wrapper an op-
portunity to package final results in the database,
or to delete them if they are temporary.

We have found that this life cycle approach pro-
vides substantial flexibility for applying wrappers se-
lectively within a system. Selective application holds
many benefits since performance impacts of process-
intensive wrappers can be incurred only when neces-
sary, and wrappers can be tailored to specific programs
or environments without necessarily having to config-
ure them for all programs on a system. We believe
that this flexibility has the potential to significantly
lower the cost of security extensions. Additionally, our
wrapper life cycle makes it very easy to specify acti-
vation criteria that activate multiple wrappers for a
single process. Support for multiple concurrent wrap-
pers allows security functionality to be conveniently
partitioned. For example, one wrapper may provide
system-global, simple access control (like the noadmin
wrapper in figure 3D) while other wrappers provide in-
trusion detection or other functionality that apply to
targeted portions of the system.

To allow the use of multiple concurrent wrappers,
we have developed a model for wrapper composition.
According to our model, systems of cooperating wrap-
pers may compose (combine) the functionality of sev-
eral individual wrappers using two methods. The first
method is “passive” composition; which occurs when
multiple wrapper instances wrap the same process and
intercept the same system call. Using passive compo-
sition, when a process calls the system call, each wrap-
per instance that wishes to intercept the event “pre,”
or before i1t occurs, intercepts the system call in turn,
according to the order in which they were activated to
wrap the process, until the flow of execution reaches
the kernel. When the system call returns from the
kernel, similarly, each wrapper instance that wishes to
intercept the event “post,” or after it occurs, is given
a turn to intercept the flow of execution. In the return
from the system call, however, the wrappers are given
control in reverse order. This ordering of pre and post
interceptions gives the passively composed wrappers a
nested relationship that grants relative control to the
outermost layers since they gain control first (on the
way in) and have the last word about how the return
parameters and codes are treated (on the way out).

Our real-world experience to date has been with pas-
sive composition. Passive composition has allowed us
to write a number of simple-yet-useful wrappers and
compose them. Passively composed wrappers have no
knowledge of one another: this simplifies them but also



makes it possible to compose incompatible wrappers
since a wrapper may condition its behavior on param-
eter values it believes are from the running process, but
that are actually from a wrapper that gained control
first. In practice, this has not been difficult to avoid
with reasonable configuration.

In our second method of composition, active com-
position, a wrapper may generate events that can be
caught by other wrappers that are listening for them,
just like system calls are caught. The primary ad-
vantage of active composition is that it will allow a
wrapper to, at runtime, translate an operating sys-
tem’s actual events into more abstract events that can
be consumed by a more abstract wrapper that can be
much more portable. An additional advantage of this
approach is that an abstract wrapper can avoid deal-
ing with details from a characterized interface and can
therefore, we believe, be much simpler. We plan to use
this capability to formulate some key security policy
models (such as the Biba integrity models [5], the Clark
Wilson integrity model [10], or the Bell and La Padula
MLS model [3]) as abstract wrappers. The goal of this
investigation will be to make logic regarding such mod-
els more reusable and portable between systems.

4 Security wrappers: capabilities and

limitations

Using appropriate activation criteria, wrappers can
be applied selectively to points of vulnerability, or can
be globally applied to all processes on a system. In
either case, with respect to a wrapped program, the
mediation and additional functionality provided by a
wrapper 1s both nonbypassable and protected from
tampering. These characteristics, in combination with
the fine-grained control that wrappers may provide by
potentially processing every system call, give wrappers
a great deal of power to add and enforce security poli-
cies. Generic Software Wrappers appear particularly
suitable for providing access control, auditing, intru-
sion detection, and application-independent security
features:

access control Wrappers are capable of enforcing
traditional access control schemes that make deci-
sions based on a rule set and subject/object labels,
such as Bell and La Padula [3], Biba [5], Clark-
Wilson [10], and type enforcement [6, 2]. Wrap-
pers are also suitable for enforcing state-based ac-
cess control schemes, such as the Chinese Wall [§],
in which access to a resource is conditioned on
a subject’s prior resource access history. Wrap-
pers are able to base access control decisions on

any state information that is available through a
system call interface, allowing them to also en-
force policies that are time-based, or sequence-
based, such as two-man control. Wrappers are also
suitable for implementing synthetic “jail” environ-
ments [9] in which process requests for sensitive re-
sources are transparently remapped to alternative,
less sensitive, resources.

In addition to controlling operating system ab-
stractions, wrappers are suitable for adding
protocol-based access control to communication
streams. By wrapping a COTS server, a wrapper
can provide the same access control and auditing
functionality as a TCP Wrapper [25] or a firewall
proxy without the need for a separate security-
providing application. Such wrappers would in-
tercept messages bound for a COTS server be-
fore they are processed, and perform the neces-
sary access control mediation or auditing based
on a set of configurable rules, which might be
stored in the wrapper database. Such wrappers
might be used to augment COTS servers with
the ability to perform access control on their
own application-specific operations, as described

in OMG’s CORBA specification, for example [30].

auditing and intrusion detection Access to sys-
tem calls and their parameter values provides ex-
tremely fine-grained auditing capabilities. Unlike
traditional auditing systems, wrappers can effi-
ciently access behavioral data without first writing
it to secondary storage. Additionally, wrappers
have a potential for performing real-time policy-
based audit data reduction, therefore providing
more detailed auditing without overwhelming sys-
tem resources. Wrappers are also suitable for im-
plementing a variety of intrusion detection tech-
niques such as specification-based detection [21],
state-based detection [18], and sequence-based de-
tection [12]. As discussed in section 5 below, we
have implemented several of these techniques.

security feature enhancement Wrappers can
transparently add some security extensions in
an application-independent manner. Significant

extensions include transparently encrypting
files that an application creates, transparently
encrypting communication streams between

applications, and performing integrity validation
checks on resources that an application uses. In
addition, wrappers can maintain attributes with
resources accessed by an application in order
to restrict other programs from intentionally or
accidentally damaging a key application.



Wrappers appear to be a very powerful and flexible
strategy for deploying security functionality to popular
end systems. There are limits, however, to what can
be achieved using wrappers:

covert channels Wrappers are not well-suited for
controlling information flow. In particular, covert
channels [24] usually emerge from resource con-
tention at low levels in a system’s architecture,
and wrappers are an extension at a system’s inter-
face.

assurance While wrappers can constrain the behav-
ior of wrapped programs to protect the underlying
system from malicious input, wrappers must as-
sume that the underlying system is functional. If
any unwrapped root program becomes malicious,
that program can turn wrappers off. Furthermore,
even if a malicious program is wrapped, the wrap-
per must implement a policy that effectively re-
strains its behavior to protect the system. While
“root confinement” policies [36] can be specified
with wrappers, policies that properly balance pro-
tection with the need for root programs to ac-
cess resources in order to accomplish their missions
may require detailed knowledge of the program’s
algorithms.

application-specific security enhancements

Enhancements which require the wrapper to be
aware of the wrapped application’s algorithm
or parameter formats can be implemented via
wrappers, but with greater cost and reduced
assurance because the algorithm and parameter
data formats used by an application must be
reverse-engineered by observing the application
in operation. Access to application source or
protocol documentation is required to provide
a higher degree of assurance that the wrapper
indeed understands the algorithm and formats
completely.

To explore wrappers capabilities and limitations, we
have developed two wrappers prototype systems.

5 Wrappers prototype systems

Our prototype currently runs on both Sun Solaris
2.6 and FreeBSD 2.2 and comprises roughly 42K lines
of commented C, C++, Yacc, Lex, Perl, and Java.
While some source code is platform-specific, a large
portion is platform-independent and source code for
all platforms resides in a single source tree. We are
also porting our prototype to Windows NT, and now

have some elements running in that environment. Our
prototype consists of four key components:

a kernel-resident WSS The WSS is the core of the
prototype. A key attribute of the WSS is that
it is structured as a dynamically Loadable Kernel
Module, which allows the WSS to be installed (by
root) in unmodified COTS UNIX systems. We
believe we can port the WSS for use with most
UNIX systems that support dynamic kernel mod-
ules (e.g., Sun Solaris, Linux, FreeBSD). Figure 1
shows a block diagram of the WSS installed in a
typical operating system kernel. As shown in fig-
ure 1, the WSS manages essentially four kinds of
elements: 1) the set of installed wrappers and cur-
rently running wrapper instances, 2) a set of Acti-
vation Criteria, 3) an efficient, lightweight kernel-
resident database system that wrappers use to re-
trieve their configuration information and to store
wrapper-generated data streams, and 4) informa-
tion about running processes such as whether they
are currently wrapped, and if so, which wrappers
currently control them. In addition to this man-
agement, the WSS also transitions system calls ap-
propriately to handler code exported by individual
wrappers, and manages the compositions of wrap-
pers.

the WDL compiler The Wrapper Compiler wrapc
translates wrappers written in WDL to C code,
which is then compiled using the native C com-
piler into a kernel-relocatable object module; the
generated object modules are loaded dynamically
into the WSS, which uses the wrappers to gener-
ate wrapper instances according to the currently
loaded set of activation criteria. Once installed,
wrappers execute directly without a software in-
terpreter. This improves the performance of the
WSS, however it also implies that wrappers are
trusted system extensions and that errors in a
wrapper may have serious consequences. A num-
ber extensible systems techniques [35, 4, 33, 28]
could be employed to remove this limitation; our
research has focused on providing the most flexible
platform possible for expressing varying security
policies.

the activation criteria compiler The wrapper ac-
tivation criteria compiler translates boolean ex-
pressions into C code, which is then compiled to
produce small executable modules. These modules
can be dynamically loaded into the WSS for run-
time execution to determine the conditions under
which individual wrappers should be activated.



The wrapper criteria language is flexible and al-
lows wrappers to be activated based on predicates
such as the user name, the program that is being
run, the current working directory, etc.

the wrappers GUI In order to conveniently manage
the wrappers prototype, we have implemented a
Java-based GUI that communicates with the WSS
through a set of new system calls that the WSS
adds when it is installed. The GUI allows an ad-
ministrator to install and uninstall wrappers, view
and modify the database tables created by wrap-
pers, set activation criteria, and track processes
that are under the control of wrappers. As an al-
ternative to the GUI, the same management func-
tionality is also implemented by a set of command-
line utility programs.

To gain experience with wrappers and test our
prototype, we have implemented and tested a num-
ber of wrappers. The most complex example of en-
hanced security functionality we have constructed to
date is seq_id, a wrapper which implements Forrest’s
sequence-based intrusion detection technique [11, 12].
According to the sequence-based intrusion detection
technique, seq_id operates in one of two modes. The
first mode 1s used to observe a wrapped process and
build a database representing its normal system call
behavior. The second mode is used to observe the
wrapped process and detect deviations from its pre-
viously observed normal system call behavior as de-
scribed by the database. These diversions corre-
spond to intrusions, and are logged in a special report
database table by the seq_id wrapper. While operat-
ing in both modes, seq_id incurs the overhead of in-
tercepting all system calls and updating the behavior
database for the wrapped process. The first mode of
the seq_id wrapper is meant only for initialization; i1t
should operate in the second, intrusion detection mode
for the vast majority of its run-time. While operat-
ing in this second mode, the seq_id wrapper performs
additional analysis whenever it detects an intrusion.
In these cases, seq_id calculates a numerical measure
of the magnitude of the deviation, and logs its result
in the report database table. We report on the perfor-
mance of seq_id in section 6. Seq_id requires 230 lines
of WDL, excluding comments.

We have also implemented a number of simple wrap-
pers to test various aspects of our prototype. The
source for five of these simple wrappers are presented
in section 2. Other, less simple, wrappers implement
artificial “jail” environments by converting resource re-
quests to alternative resources, perform file-oriented

pseudo-cryptography, and perform specification-based
intrusion detection using Ko’s technique [21].

Based on our experience with seq_id and these other
wrappers, we believe that our wrappers prototype can
be used as a common implementation and management
mechanism for a considerable range of existing secu-
rity functionality extensions. Good candidates for im-
plementation with wrappers are those techniques that
apply some form of interposition to an interface; in
some cases even those that, when implemented with-
out wrappers, rely on modifications to COTS source.

6 Performance

Table 1 summarizes the results of a series of per-
formance tests designed to estimate the overhead as-
sociated with the WSS and specific kinds of wrapper
functionality. The first column of the table contains
results from measuring the time taken to compile a
Generic version of the FreeBSD kernel, a task which
generates roughly 400 system calls per second on our
testbed. The column compares the kernel build perfor-
mance achieved by our testbed under the following five
conditions:

no WSS: the baseline performance of the testbed
without any modifications due to the wrappers
prototype.

WSS only: the performance with the WSS loaded
into the kernel, without any installed wrappers or
Activation Criteria. In order to support the Wrap-
per Life Cycle, the WSS must intercept the fork,
exec, and exit system calls made by all processes,
wrapped or not. This mandatory interception im-
poses a 3-4% penalty on the kernel build’s per-
formance using our current wrappers prototype.
While we have designed the WSS with perfor-
mance in mind, we have not optimized the pro-
totype yet, so improvements may be possible.

callcount: the performance when wrapped by the
callcount wrapper. The callcount wrap-
per is a version of the dbcallcount wrapper
shown in figure 4 which maintains its state us-
ing its own linked-list data structure rather than
the kernel-resident database. Instances of the
callcount wrapper intercept all system calls but
perform only minimal processing after intercep-
tion. Callcount adds roughly 1.4% to the base
overhead of the WSS for a total of a 4.3-5.3% per-

formance penalty.

dbcallcount: the performance when wrapped by fig-
ure 4’s dbcallcount wrapper. This wrapper



Average Kernel Build Time Average HTTP Latency Average HTTP Throughput
time o penalty time o penalty t-put o penalty
(s) (s) (s) (s) (Mbits/s) | (Mbits/s)
no WSS 583.43 0.53 0% | 1.1736 | 0.0579 0% 4.21 0.18 0%
WSS only 604.38 0.46 3.47% | 1.1740 | 0.0541 0.03% 4.22 0.06 | -0.24%
callcount 613.10 0.56 | 4.84% | 1.1908 | 0.0307 1.44% 4.13 0.05 1.90%
dbcallcount 614.09 1.18 | 4.99% | 1.1885 | 0.0634 1.25% 4.18 0.12 0.71%
seq-id 624.62 1.23 6.59% | 1.1711 | 0.0446 | -0.21% 4.07 0.06 3.33%

Table 1. FreeBSD Prototype Performance for Kernel Build and Web Server Benchmarks

shows only a small relative penalty associated with
using the kernel-resident database rather than
custom-made data structures, but as shown below
by the Average HTTP Latency benchmark, this
result is not conclusive.

seqid: the performance when wrapped by the
sequence-based intrusion detection wrapper de-
scribed in section 5 running in detection mode.
The 5-8% performance penalty observed for this
wrapper on the kernel build test suggests the
wrappers prototype can provide useful security
functionality with reasonable overhead even for so-
phisticated system call analysis techniques.

The second and third columns of the table contain
results observed for a custom-made web server bench-
mark that generates roughly 900 system calls per sec-
ond on our testbed. The Average HT'TP Latency col-
umn describes the delay a web client experiences be-
tween the moment it makes a request and the moment
it receives the corresponding reply from the web server.
The Average HT'TP Throughput describes the rate at
which the web server returns data to the web client,
as measured by the web client. Although the results
shown in these two columns generally tend to follow
the same pattern of increasing performance penalties
as the Average Kernel Build Time benchmark, the high
variances and low overheads induced by the web bench-
mark workload make it difficult to meaningfully com-
pare the relative performance penalties of each wrap-
per.

One exception to the trend of increasing overhead
is the unexpected relationship between the callcount
and dbcallcount throughput results. The small work-
ing set of the web server benchmark generally precludes
any need to swap to secondary storage. However, the
callcount wrapper, which periodically sends bursts
of messages to the system log daemon, causes brief,
periodic bursts of swapping on our testbed in time

with its logging activity. This swapping artificially
increases the penalty associated with the callcount
wrapper, making it appear to impose greater over-
head than the dbcallcount wrapper, which does not
cause swapping. Two other exceptions are the -0.21%
seq-id latency performance penalty and the -0.24%
“WSS only” throughput performance penalty. We be-
lieve these numbers are anomalies induced by the high
variance in the web server benchmark results.

The Average HTTP Latency and Average HT'TP
Throughput results were produced by a custom-made
web server benchmark executed with an Apache 1.3.0
web server and the WebStone 2.0.1 benchmarking soft-
ware. The Apache web server ran on a 166MHz Intel
Pentium-based microcomputer with 64MB RAM and a
16-bit ISA Ethernet card running a Generic FreeBSD
2.2.7 kernel. The cron service was disabled during the
tests. This machine was connected to a 66 MHz Intel
486-based microcomputer with 32MB RAM and an 8-
bit ISA Ethernet card via a simple Category 5 crossover
cable. This second machine was used to run 32 Web-
Stone 2.0.1 web clients through a series of four 10-
minute trials using the standard WebStone 2.0.1 file set
for each row in table 1. The Average Kernel Build Time
results were produced by building a Generic FreeBSD
2.2.7 kernel on the Pentium-based microcomputer de-
scribed above while completely disconnected from the
network, using the standard build tools provided with
the FreeBSD 2.2.7 distribution. Each row in table 1
represents the average result after four builds.

All tests other than the seq—id Average HTTP La-
tency and Throughput tests were conducted with the
version of the FreeBSD prototype current on February
19th, 1999. The seq-id Average HTTP Latency and
Throughput tests were conducted with the version of
the FreeBSD prototype current on March 1st, 1999,
which incorporated a small number of bug-fixes.



7 Related work

The Generic Software Wrappers project owes much
of its direction as a common framework for security ex-
tension to the efforts cited in section 1. In particular,
the basic concept of adding security functionality to a
COTS application by introducing a new intercepting
software entity rather than modifying the application’s
source 1s central to application-gateway firewall prox-
ies [1], Wietse Venema’s TCP Wrappers [25], and the
Janus project [15]. Several projects use (or propose to
use) mechanisms which are similar to those employed
in Generic Software Wrappers. Specifically, the use
of system call interception proposed in Sekar’s intru-
sion detection approach [32] is similar to our use of the
same mechanism. Also, other intrusion detection ef-
forts [16, 23] have included Petri net-based mechanisms
as state machines to keep track of events in series. We
have employed the WDL sequence mechanism to ac-
complish the same task. While WDL sequences are
not structured as Petri nets, they are state machines
nonetheless.

The SLIC project [14] has demonstrated a system-
call interception mechanism for kernel-resident soft-
ware extensions on Solaris that is similar to the one
used by Generic Software Wrappers. Using the SLIC
mechanism, they have implemented a variety of secu-
rity functionality extensions, including an encrypted
filesystem and a Janus-like restricted execution envi-
ronment. While it lacks an abstraction mechanism
like WDL, an extension management mechanism like
the Wrapper Life Cycle, and support for active com-
position, SLIC’s interception mechanism is generally
more comprehensive than the one found in the existing
wrappers prototypes. Unlike the current wrappers in-
terception mechanism, the SLIC mechanism is capable
of intercepting operations at the virtual memory, vir-
tual filesystem, and signal dispatching interfaces. SLIC
therefore has the potential to wrap unusual COTS ap-
plications, like FreeBSD’s nfsd and nsfiod. These ap-
plications spend most of their run-time hidden below
the system call interface in inverted system calls, ren-
dering their activities invisible to the wrappers inter-
ception mechanism. Future wrappers prototype devel-
opment may incorporate elements of SLIC’s intercep-
tion technology.

8 Conclusion

We have presented techniques for augmenting the
security functionality and assurance of COTS appli-
cations and operating systems using Generic Soft-
ware Wrappers. We have described how a Wrapper

Definition Language can be used to insulate wrap-
pers from system-specific details, encouraging simplic-
ity and portability, and allowing wrapper-writers to
implement meaningful security functionality without
the need for comprehensive knowledge of low-level ker-
nel minutiae. We have also described how a Wrapper
Life Cycle framework can form the basis of an con-
figurable rule-based mechanism to automatically man-
age the relationships between processes and wrappers
during run-time — an essential service where multi-
ple wrappers must be directed to a critical subset of
processes on a system. We have also demonstrated
the effectiveness of these techniques on our Solaris
and FreeBSD prototypes by implementing a number of
wrappers, including one which implements sequence-
based intrusion detection. Like all techniques, Generic
Software Wrappers has its limitations. For example, at
the system call level, events occurring at the applica-
tion level of abstraction are difficult to perceive in the
stream of low-level system calls. Also, wrappers can-
not enforce information flow-based policies to eliminate
covert channels. However, the Generic Software Wrap-
pers technique can provide a common implementation
and management mechanism for a wide variety of secu-
rity functionality extensions including access control,
auditing, intrusion detection, and cryptographic pro-
tocol enhancements. This common mechanism has the
potential to ease the task of system developers who
seek to coordinate and integrate security functionality
extensions on COTS systems.
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