Protection Wrappers

A Simple and Portable Sandbox for Untrusted Applications

Christian Jensen*

Daniel Hagimont!

INRIA Project SIRAC
655, avenue de I’Europe
38330 Montbonnot — France
Christian.Jensen@imag.fr, hagimont@inrialpes.fr

Abstract

In open and configurable applications, external programs
are often used to handle different functions and data for-
mats. This is particularly true for applications that com-
municate through the Internet, where new protocols and
data formats are frequently introduced.

These external programs are often installed quickly
and without a full security auditing, even when the
sources are available. This makes the users of such ap-
plications vulnerable to viruses and Trojan horses in-
troduced by misconfiguration or flaws in the security of
these applications.

In this paper we introduce a mechanism called "protec-
tion wrappers" that allows an application to run external
programs in a restricted environment called a “sandbox”.
Programs running in a sandbox will execute with the
identity of a user with limited privileges. This reduces
the potential damage to the system and to the data of
the user who originally launched the application.

1 Introduction

The dramatic growth of the Internet and the popularity
of the World Wide Web have given birth to a new net-
work community where individual users, academic and
industrial institutions, in all countries, are exchanging
data and software freely across the network. The Inter-
net was previously used to exchange software and data
among a small community of researchers who knew and
trusted each other - just like computer hobbyists have
exchanged software on diskettes with friends, neighbors,
and colleagues - but today people connected to the In-
ternet are receiving data and using software from various
unknown sources, e.g. installing and using a new video
player found on a Web server.

In principle both programs and data should be care-
fully verified before being used, the program by the ad-
ministrator who installs it and the data by the program

*Université Joseph Fourier, Grenoble
fINRIA Rhone-Alpes

that manipulates them. However, in many cases software
or data are used without prior verification and without
authentication of the source.

Internet communication softwares like web browsers
or mail readers are increasingly relying on external pro-
grams to display images or postscript files, play music or
video clips, convert MIME encoded mail, or simply allow
users to specify external pagers and editors. These pro-
grams are potential Trojan horses for two reasons: first
because they may have been written by malicious pro-
grammers and secondly because they rarely implement
a protection policy that allow them to verify data before
operating on them.

Most of these external programs are developed to
be used in safe environments where data are generally
trusted. Two good examples of this are Ghostscript
(gs(1)) that allows users to preview their PostScript
documents and MS—Word that can be used to prepare
reports and write documentation for programs. How-
ever, PostScript is a full programming language, that for
instance allows programs to access files in the file sys-
tem, and MS—Word has the ability to create or update
macros, based on the definitions found in a document.
When these programs are used in the potentially hostile
environment of the Internet, where the PostScript docu-
ment retrieved from a Web—server or the Word document
attached to an email may have been carefully prepared
by an adversary, these programs can act as Trojan horses
that corrupt the users files or helps potential intruders
to breach the site security.

It is therefore crucial to provide a protection service
that prevents the use of these programs from damag-
ing the machine, and the environment of the user who
runs the programs. In this paper, we propose a portable
mechanism that isolates programs within a sandbox with
restricted privileges. This mechanism works by wrap-
ping the application in a front end program (the wrap-
per) that implements the need—to—know principle, with-
out modifying the application itself.

A program isolated in a sandbox can initially have few
well-defined access rights. Additional rights are then

dynamically granted at run—time only if required. For
example, the PostScript previewer can be isolated in a
sandbox without access rights to the local file system.
When a user invokes the wrapped previewer, a read ac-
cess right is dynamically added to the sandbox before
the previewer is started, thereby allowing the previewer
to read the file. When the previewer terminates, this
access right is automatically revoked.

The rest of this paper is organized as follows: Sec-
tion 2 contains an analysis of the threat model. In sec-
tion 3 we present the design of our protection service. Its
implementation using protection wrappers is outlined in
section 4. Our work is compared to related works in
section 6 and we present our conclusions in section 8.

2 Threat Model

The main problem with downloading executable content
from the Internet is that it crosses the first and most
important line of defense: the system boundary [4], i.e.
it allows access to the system as an authorized user.

The security of most machines currently connected to
the Internet relies on inviolability of the system bound-
ary through authorization. This is normally achieved
through firewalls (e.g. NetWall from Bull [1]), filter-
ing network traffic (e.g. Wietse Venema’s TCP Wrap-
pers [2]), and login procedures with good passwords (e.g.
Matt Bishop’s passwd+ [3]).

A downloaded program or a program interpreting
downloaded data runs under the identity of the user
starting the program and has all access rights available
to that user. In this case neither firewall, network filter-
ing, nor strong passwords protect the system. Running
inside the system boundary, the program can install a
Trojan horse (a program that behaves like a known pro-
gram, but has a security related side effect) or a back
door that allows the potential intruder to enter the sys-
tem at a later time, without passing through the normal
authentication procedures.

The main problem is therefore to run programs that
handle unverified downloaded content outside of the local
hosts perimeter of trust.

In order to better analyze the problems involved, we
divide downloaded content into three different categories:
passive data, active data and executable programs. This
classification is based exclusively on the intended use of
the data and as consequence decides what programs are
used to handle it. These categories are defined and dis-
cussed in the following.

2.1 Passive Data

Data that are intended to be stored on disk, used by pro-
grams or displayed on terminals without prior interpre-
tation are considered passive. Examples of passive data

are simple mail messages (RFC 822), network news, and
images or sound files downloaded with a web browser.
Passive data are generally harmless, i.e., they can
cause no harm to well written programs. However, well
prepared data may overflow a buffer in buggy programs,
which can result in parts of the data being interpreted
as code. This was the case with the bug provoked in
fingerd(8) by the infamous Internet worm [5, 6].

2.2 Active Data

We define active data as data that can introduce modi-
fications to system objects or consume system resources
when interpreted by the proper interpreter. Examples
of active data are Java applets, PostScript documents,
MS-Word documents containing macros, and all sorts of
scripts.

Active data pose the same threats as passive data.
Furthermore, they may exploit all openings that the in-
terpreter may offer, e.g. the access to the local file system
offered by earlier versions of Ghostscript. This problem
is especially important for interpreters developed for use
in trusted environments, e.g. small networks or single
user systems, because they rarely implement a protection
policy that allows them to verify data before operating
on them.

2.3 Executable Programs

In principle, all executable programs (third party soft-
ware or binaries downloaded through the Internet) and
all source distributions that have not been explicitly au-
dited before compilation should be regarded as untrusted
programs, and as such potential Trojan horses. In reality
most users and system administrators trust certain third
parties (e.g. companies or organization like Netscape or
the Free Software Foundation or well known FTP sites
like simtel.net) to provide safe binaries or program
sources.

Untrusted programs run under the identity of an au-
thorized user and can access all resources available to
that user.

2.4 Discussion

The only way to protect the system against an attack
with passive data is to ensure that all programs that
operate on downloaded data are well behaved and verify
data before operating on them.

It is generally difficult to verify that all these programs
perform well. We therefore propose to isolate untrusted
programs in order to reduce the potential damages to
the local host issued either by the untrusted software, or
by downloaded active or passive data.

It is also generally difficult to determine a priori the re-
sources required by the untrusted program. We propose

an implementation of the need—to—know principle, where
the access rights of the program are restricted to the
minimum and additional access rights are dynamically
granted according to the application’s requirements.

3 Sandbox Design

We aim at building a mechanism that protects the local
system from intrusion or damage caused by the use of
downloaded content. Installation of Trojan horses, back
doors, and any persistent damage to the system involves
modifying data on disk, so we especially focus on limiting
access to the local file system.

The access control mechanisms offered by most of the
systems connected to the Internet (excluding single user
systems without real security, e.g. Windows or MacOS),
define access rights in terms of operations (e.g., read,
write, and execute) on files, allowed by individual or
groups of authorized users of the system. We want to
build the sandbox on the protection mechanisms offered
by the operating system, so we find it natural to create
a sandbox by changing the identity of the user to some
unprivileged user before starting the program.

A program isolated in a sandbox executes with the
access rights of the unprivileged user. These access rights
are restricted to the minimum required for the software
to be runnable (mainly the software’s configuration files).
Additional access rights are dynamically granted to the
program at run—time, e.g. when a filename is passed as
an argument to the program.

The protection wrapper (a front end program) imple-
menting this mechanism must parse the arguments of
the program to determine if any additional access rights
should be added to the sandbox before the program is
started. The addition of access rights is controlled by
the security policy compiled into the protection wrapper.
The wrapper then assumes the identity of the unprivi-
leged user and runs the program. All additional access
rights must be revoked, when the wrapped program ter-
minates.

Different policies can be defined for the same program
by constructing different protection wrappers. The pro-
tection wrapper can restrict the environment of the un-
trusted program further, by controlling the environment
variables available to the program and/or the working
directory of the program.

4 Implementation

We have written a number of protection wrappers by
hand, in order to verify the feasibility of our proposition.
Our experiences with these wrappers are described in the
following.

4.1 Protection Wrappers

Protection wrappers rely on the protection mechanisms
of the underlying operating system, in our case primarily
file access control implemented by Access Control Lists
(ACLs). ACLs allow fine grained access control for files,
i.e., individual users can be granted or denied specific
access rights to a file.

This mechanism is used by the protection wrapper to
grant the unprivileged user access to the files specified
on the command line, before taking on the identity of
that user. Furthermore, it is used to revoke access rights
after the wrapped program has terminated.

The overall structure of a protection wrapper is de-
scribed in pseudo—C in figure 1.

main(int argc, char*x argv)

{
parse_arguments () ;
grant_rights(Q);
setup_environment (&environment) ;

if (Mfork()){
/* in child */
setuid(unprivileged_uid) ;
setgid(unprivileged_gid) ;
execve(PROGRAM, argv, environment) ;
} else
wait();

revoke_rights();
return() ;

Figure 1: Protection wrapper structure

In practice the functionality of parse_arguments()
and grant_rights() are performed by the same pro-
cedure. When the wrapper recognizes a file name pa-
rameter (in argv), it adds the unprivileged_uid to the
ACL for that file, with the access rights compiled into
the protection wrapper. It also adds the file name and
the access right to the list of rights to be revoked when
the wrapped program terminates.

4.2 Using Protection Wrappers

The protection wrapper has two main functions: chang-
ing the identity of the caller to an unprivileged user and
dynamically granting access rights for that user in the
ACLs of files needed to run the program (i.e., configura-
tion files and files passed as arguments to the program).

In order to change the identity of the caller, the wrap-
per itself must execute as a privileged user (e.g. root on
a Unix system), so ordinary users cannot be allowed to
create their own wrappers. An ordinary user who wishes

to run a downloaded program must therefore ask his sys-
tem administrator — or use a dedicated tool — to install
a wrapper for the downloaded program before he can
run it securely. Once a protection wrapper is installed,
the untrusted program can be replaced by updated ver-
sions without changing the wrapper, as long as the new
versions respect the original interface. However, if an or-
dinary user is allowed to update a wrapped program, he
is effectively allowed to run almost any program anony-
mously (i.e., as the unprivileged user). In general, this
does not augment his privileges, but can be used to mask
his real identity when performing questionable actions.
The right to update a wrapped program should therefore
be restricted to a few trusted users.

Different normal users can use the same protection
wrapper to execute the same program as the same un-
privileged user, or different wrappers can be created for
each of the normal users.

Using a single wrapper has the advantage of saving
disk—space and being simple and easy for the system ad-
ministrator to manage (he only has a single wrapper to
do and it can be installed transparently to the ordinary
users of the system), but all instances of the wrapped
program will run as the same user and with the union
of all access rights dynamically granted to that unprivi-
leged user. In this case, an exploitable program can be
used by a local user (anyone with legitimate access to
the system) to obtain temporary access rights for those
files other users have passed as argument to a wrapped
program. Furthermore, a single unprivileged user effec-
tively hides the identity of the real user, when several
instances of the program are running simultaneously.

Another possibility is to have different protection
wrappers associated with different unprivileged users.
Each real user will run the wrapped program as a differ-
ent unprivileged user, which prevents interference from
other users and restores accountability. However, this
method requires one or more “pseudo—users” defined for
each real user of the system, which is both resource con-
suming and makes it difficult to detect security vulner-
abilities (the potentially large number of pseudo—users
makes it difficult to audit the system).

4.3 Protection Wrapper Generation

Writing protection wrappers for all untrusted applica-
tions is a tedious and error prone task. Furthermore, all
protection wrappers have the same structure, so we are
therefore working on a tool that generates source files for
a protection wrapper, based on the protection definitions
described in a configuration file.

The syntax of the protection wrapper configuration
file will be similar to the one illustrated in figure 2.

The IDENTIFICATION division identifies the
wrapped program with a full path name and the
identity (both UID and GID) of the unprivileged user.

IDENTIFICATION
PROGRAM = <full path name>

UID = <uid>

GID = <gid>
ENVIRONMENT

DIRECTORY = <full path name>

LIMIT <resource> = <limit>

{ENV <variable name> = <value>}
PARAMETERS

{<param> = [access right] <type>}

Figure 2: Configuration file syntax

The ENVIRONMENT division allows customization
of the runtime environment of the wrapped program.
The wrapper can change directory (maybe even intro-
duce a chroot jaill), set limits on resource usage with
setrlimit(2), or specify values for environment vari-
ables, e.g. $path.

The PARAMETERS division specifies all the param-
eters accepted by the program and the access rights that
should be granted to the sandbox. It is also possible
to impose restrictions on some of parameters values, if
the wrapped program has well known weaknesses that
cannot be repaired easily.

5 Evaluation

In the following we present our experiences with pro-
gramming protection wrappers. The evaluation covers
both qualitative aspects (do protection wrappers achieve
their goals?) and quantitative aspects (what is the per-
formance overhead of wrapping an application?).

5.1 Qualitative Evaluation

Protection wrappers allow users to run untrusted pro-
grams under the identity of an unprivileged user, thereby
reducing the risk of compromising themselves or the sys-
tem on which they run. Moreover, the dynamic transfer
of access rights only allows the wrapped program to ac-
cess those files it actually needs; the access rights are
automatically revoked when the program terminates.

The main problem with protection wrappers is that
they can only wrap entities that are visible from the out-
side of the program, i.e., well-known configuration files
or files passed as arguments on the command-line. File-
names supplied interactively to the program cannot have
the access rights added automatically by the protection
wrapper.

This problem is best illustrated by an example. In the
PostScript previewer ghostview (1), PostScript files can
either be specified as arguments on the command line

lchroot Jails are described in 6.1

or interactively through a file dialog box. It is possible
for the protection wrapper to grant temporary access
rights to the files passed as arguments, but not for those
entered interactively through the file dialog. The file
dialog is normally implemented as one or more functions
(a widget or a library), that is linked with the program,
and will be loaded with the application at runtime. This
library becomes an integral part of the wrapped program
and will run with the access rights of the unprivileged
user.

However, by specifying the environment of the
wrapped program, we can control the path used by the
system to load shared libraries. It is therefore possible to
use an approach similar to protection wrappers for the
shared libraries.

Interactive programs pose two problems for such a
wrapper mechanism: first of all, each program may have
its own input mechanism (so it is difficult to know what
libraries and functions to wrap) and secondly, once in the
wrapped program it is impossible to get the real user’s
access rights back (so we need something similar to the
setuid mechanism for the shared libraries).

One way of solving the problem of different input
methods is to require all programs to use a single stan-
dard interface, e.g. the Motif file selection dialog box [7].
A library that wraps the standard input method and
changes the ACLs for the selected files, can then be sub-
stituted for the normal library by setting the library path
of the wrapped program. The original protection wrap-
per and the library wrapper described here have opposite
purposes: the protection wrapper is used to reduce the
access rights of the wrapped program and the library
wrapper is used to reinstate the access rights of the real
user to a single library within the wrapped program.

The library wrapper must execute with special privi-
leges in order to reinstate the access rights of the real user
and manipulate the ACLs of the files entered through the
file dialog. Furthermore, it must be able to identify the
real user of the program and match that identity with
the user who enters the filename. We are currently in-
vestigating these problems.

5.2 Quantitative Evaluation

The performance of the protection wrapper mechanism
has not been our primary concern. However, it is unlikely
that people will use the protection wrappers if they im-
pose a large overhead on the wrapped programs. We
have measured the overhead for a simple program that
takes two filenames as arguments and copies the con-
tent of one file into the other, i.e., it requires the ad-
ditional access rights for two files while the program is
running. The measurements were performed on a BULL
Estrella workstation (PowerPC 604, 100MHz) running
ATX—4.1.4. The cost of the mechanism is shown in Ta-
ble 1.

Action Measured Time
ACL manipulation 36 ms
fork + exec 6 ms
total overhead 42 ms

Table 1: Overhead of the protection wrapper mechanism

Our measurements show two things: the overhead of
the mechanism is small compared to the runtime of many
programs and secondly that most of the overhead is due
to the manipulation of ACLs.

The total overhead can be broken into the following
categories: ACL manipulation, spawning the wrapped
program (fork(2) and exec(2)) and parsing the pa-
rameters in the wrapper in order to know which access
rights to transfer 2.

The test program was very simple so the time required
for parsing the parameters a second time was negligible
(around 0.2 ms). However, we do not expect this over-
head to become dramatically higher in more complex
programs.

We expect the time required to spawn the wrapped
program to be constant, although it may increase slightly
if a large environment is passed along to the wrapped
program.

The main cost of our protection wrapper mechanism
is the manipulation of ACLs. This cost will increase
with the number of ACL manipulations, i.e., configu-
ration files and filenames passed as arguments on the
command line.

6 Related Work

The basic idea for the protection wrappers (i.e., to con-
fine programs to a limited environment (a sandbox) at
run-time) is inspired by the tradition of using chroot (1)
to restrict the environment of programs in Unix and by
the Janus system developed at Berkeley. It uses the same
sandboxing mechanism as the suEXEC mechanism in the
Apache web—server. We call this mechanism a “setuid
jail” in analogy with the chroot jail. We examine these
sandboxing solutions in the following.

6.1 chroot Jails

The chroot jail is probably one of the oldest mechanisms
to control the environment of a program that handles
untrusted content. It relies on the chroot program or li-
brary function, that changes the perceived root directory
of an application. This means that programs can be con-
fined to a subtree of the file system hierarchy. Any file

2The shown wrapper does not control the environment of the
wrapped program, so the overhead will be slightly higher if this
functionality is build into the wrapper.

name used by a chroot’ed program will be interpreted rel-
ative to the perceived root directory. This is often used
to prevent public services like anonymous ftp or Web—
servers from accessing sensitive information, e.g. system
configuration files.

The advantage of this model is that the operating sys-
tem guarantees that only resources available in the sand-
box can be corrupted. The disadvantage is that every-
thing the program needs to run (configuration files, dy-
namic libraries, ...) has to be copied into the sandbox
before the program is run, and any results have to be
copied back out from the sandbox (making sure that no
valid data is overwritten) when the program terminates.

6.2 Janus

Janus [8] uses the operating systems process tracing ca-
pability to monitor all system calls from processes run-
ning in a sandbox. System calls that are potentially dan-
gerous, e.g. open(2), is only allowed to proceed if it is
explicitly allowed by a security policy and not disallowed
by any other policy.

These policies cover different areas of system secu-
rity, e.g. access to the file system or network connec-
tions. Security policies are statically specified in config-
uration files that are read when the system is initialized.
This means that Janus has the same disadvantage as
the chroot jail mentioned above, i.e., access rights to
local resources cannot be granted dynamically according
to the invocation parameters. Moreover, Janus relies on
the ability to filter all system calls by a monitoring pro-
cess, either through the ptrace(2) system call or /proc
file system. These features are widely available on Unix
systems, but porting this mechanism to other systems
seems difficult.

suEXEC

The Apache http—server provides the ability to run Com-
mon Gateway Interface (CGI) programs as a different
user from the one running the web—server. This allows
web—servers, that host many different users, to launch
programs started from a web—page with a user id differ-
ent from its own (e.g. the identity of the user owning the
web-page). Programs started by the web—server would
otherwise have access to all resources managed by the
web—server.

The suEXEC mechanism implements half of the func-
tionality of a protection wrapper: it allows a user to
run a program under a different user id3, but there is no
mechanism to dynamically grant additional access rights
to the wrapped program at runtime.

6.3

3The suEXEC mechanism can be used to change the identity to
any user (except root) when running any program, so it naturally
comes with a lot of restrictions on who can use it and how it can
be used.

7 Future Work

The implementation of protection wrappers has raised a
number of interesting problems that we are currently in-
vestigating or planning to investigate in the near future.
We are especially focusing on three problems: protec-
tion wrapper generation, wrapper environment control
and access rights for interactively specified parameters.

We are currently working on a generator for protection
wrappers. This generator will allow us to automatically
generate the sources for a protection wrapper from a
specification similar to the one illustrated in Figure 2.
Based on our experiences with this generator, we plan
to create a tool that will allow ordinary users to specify
and install their own protection wrappers.

The protection wrapper allows us to control the envi-
ronment of the wrapped program, by setting or changing
the values of environment variables. We are currently
investigating how much of the real user’s environment
should be inherited by the wrapped program and how
this control can be used to improve the security of the
wrapped application.

The problem of interactively specified parameters has
to be solved in order to make the protection wrapper
mechanism generally applicable. We plan to limit our
support to programs that use a standard input method
or where the input functions in the source code are easily
identifiable and located in a way that makes it easy to
split them out into a separate shared library. We need
to find an efficient way of executing this shared library
with the access rights of the real user, and associate this
library with the real users input device.

8 Conclusions

In this paper we have presented some of the security
problems of composing applications from external pro-
grams. The main problem is that these programs are
potential Trojan horses because they rarely implement a
protection policy that allow them to verify data before
operating on them.

We have proposed a mechanism for isolating untrusted
components (programs) in sandboxes, where they can do
little harm to the system or the users running the appli-
cations. Several mechanisms have been proposed to iso-
late untrusted code, but none of these provide dynamic
granting of access right.

We have outlined the implementation of this sandbox-
ing scheme on an Unix style system, but most of the
system mechanisms we used are general purpose oper-
ating systems mechanisms. We plan to implement it on
other systems, in particular Windows NT.

Our experience with protection wrappers show that
they incur a relatively small overhead on the overall run-
time of an application.

However, confining all programs to separate sandboxes
would probably cripple the system in a way that would
make it unacceptable for most civilian uses (and the mil-
itary will generally have the resources to audit all useful
programs). It is therefore often a question of trust and
the individual security policy defined for the system, that
decides which programs to isolate in sandboxes.

Acknowledgments

This work was partially supported by CNET (France
Télécom). We would also like to thank the anonymous
reviewers for their helpful suggestions and valuable com-
ments on ways to improve this paper.

References

[1] F. Soinne: “Netwall Version 3.2”. Bull Net-
wall Whitepaper available from http://www-
frec.bull.com/ospbuhp.htm.

[2] W. Venema: “T'CP Wrappers”. The TCP
Wrapper distribution 18 available from

ftp://ftp.cert.org/pub/tools/tcp _wrappers.

[3] M. Bishop: “Anatomy of a Proactive Password
Changer”. Proceedings of the Third UNIX Security
Symposium, pp. 171-184, August 1992.

[4] M. Gasser: “Building a Secure Computer System”.
Van Nostrand Reinhold, 1. edition pp. 19-21, New
York, 1988.

[5] M. W. Eichin and J. A. Rochlis: “With Microscope
and Tweezers: An Analysis of the Internet Virus of
November 1988”. Presented at the 1989 IEEE Sym-
posium on Research in Security and Privacy, 1989.

[6] E. H. Spafford: “The Internet Worm Program: An
Analysis”. Purdue Technical Report CSD-TR-823,
December 1988.

[7] P. M. Ferguson and D. Brennan: “Motif Reference
Manual (The Definitive Guides to the X Window
System, Vol 6B”. O’Reilly & Associates, December
19935.

[8] I. Goldberg and D. Wagner and R. Thomas and
E. A. Brewer: “A Secure Environment for Un-
trusted Helper Applications”. Proceedings of the 6th
USENIX Security Symposium, pp. 1-13, 1996.

[9] Apache Documentation: “Apace suEXEC Support”.
Apache HTTP Server Version 1.3, available from
“hitp:/ /www.apache.org/docs/suexec. html”.

