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Abstract

Secure distributed applications often include code to authenticate users, verify access rights, and establish
secure communication channels between software components (e.g., clients and servers). This code is often par-
ticular to the application and the context in which the application is used. Embedding protection definitions in
the application code makes it difficult to reuse because different applications often have very different protection
constraints. In this paper we argue that protection definitions should be specified separately from application code
in order to facilitate protection reconfiguration and software reuse. This separation may be achieved by specify-
ing protection definitions in an Protection Interface Definition Language, and is implemented by proxies installed
between software components that are executing in different protection contexts (e.g., between client and server).
Mechanisms for creation and dynamic installation of protection proxies have been implemented in a distributed
shared memory system, and the viability of our solution is demonstrated by a simple name server, that is currently
being reused in three different protection contexts.

1. Introduction

Recent advances in software engineering, such as the notions of middleware [2] and software architectures [9,
10, 8, 1], allow programmers to compose applications from a mixture of old software modules, third party libraries,
legacy programs, and a minimal amount of code developed for that particular application. However, most of these
efforts ignore application protection leaving it to the underlying operating system, which is inadequate when
applications are composed from components of different provenance.

The security problem of reusing code in distributed applications is probably best illustrated by the use of external
programs in most WWW-browsers. Most browsers can be configured to use external/third party programs to
display images or postscript files, play music or video clips, convert MIME encoded mail, or simply allow users
to specify external pagers and editors. These programs are potential Trojan horses, because they rarely implement
a protection policy that allows them to verify data before operating on them. Most of these external programs
are developed to be used in safe environments, e.g., to allow users to preview their private postscript documents
(postscript is a full programming language, that for instance allows programs to access files in the file system), but
are being reused by the WWW-browser in the potentially hostile environment of the Internet, where data may be
controlled by an adversary. In the example of the postscript previewer all protection constraints are met. However,
a previewer that implements the full postscript definitions, must include primitives that allow access to the file
system, which allow potential intruders to install a Trojan horse from a postscript document.
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Bugs and undocumented features are well known ways of breaching a systems security, but the example above
shows that programs that comply with specifications can be just as dangerous. All software components should
therefore be considered untrusted, and executed with the least possible privileges, this is also known as confinement
or the need–to–know principle.

In this paper we propose a model where each reused software component is confined to a restricted execution
context (often called a sandbox), where it can do little harm if protection constraints are violated. In order to
facilitate software reuse, protection constraints are managed in the interfaces between software components. This
allows protection specifications to be altered by redefining the interfaces (and recompiling the stubs), without
modifying the components themselves.

The rest of this paper is organized as follows: section 2 defines the motivation for this work including the threat
model. We propose a protection model for reusable software in section 3. This model has been implemented in a
distributed shared memory system, and an experiment with software reuse in this system is described in section 4.
We review related work in section 5. Section 6 presents our conclusions and describes some directions for our
future work.

2. Motivation

In the following we define our model for software reuse and the threat model we are considering, in order to
establish the protection requirements for software reuse. We mainly focus on application protection and access
control, and do not consider problems relating to safety of applications (correct execution), nor problems relating
to overuse of resources (denial of service attacks).

2.1. Software Reuse Model

An application programmer should be allowed to reuse software components without knowing all the protection
constraints of each component, and to tailor the known protection constraints to the needs of the application. This
leads to the following model:

Components are computational units written in any programming language. The protection constraints of
components are not necessarily known, so they are generally considered untrusted. Components are the
bricks of an application.

Connectors define the interactions among components — and allow explicit protection constraints to be met,
when there exist a valid mapping between the respective constraints of the interacting components. Connec-
tors are defined in a Interface Description Language (IDL). Connectors are the mortar of an application.

Configurations define the application structure through component interconnections. The configuration also
defines the protection context of each component, this context is described further in 3.3. The configuration
constitutes the application built from components and connectors.

In order to define an appropriate protection model, we first need to examine the protection problems introduced
by the above model. This is done in the following.

2.2. Threat Model

From the application programmers point of view software components should be black boxes that promise to
provide certain semantics for well defined interfaces. However, there is no guarantee that the black box actually
keeps that promise, or that it does not attempt to compromise the security of the application, the machine running
it, or the network segment hosting that machine.



A component that executes with all the privileges of the user launching the application may accidentally or
maliciously corrupt, or delete data (e.g., files) belonging to that user or leak sensitive data available to that user.
The component should therefore be executed with the strict minimum of privileges following the need–to–know
principle.

2.3. Protection Requirements for Software Reuse

Most software components are written with both explicit protection requirements and implicit security con-
straints. The requirements are normally well documented, and include data encryption and establishment of secure
communication channels, authentication of remote entities, and explicit passing of credentials to access control
mechanisms. The implicit security constraints are more elusive, often involving bounds on parameters and viola-
tion of consistency of data structures, e.g. in a procedural environment, caller and callee must agree on the size
and format of parameters passed between them. Secure reuse of software components requires that both protection
requirements and security constraints to be met.

Different applications have different protection requirements, e.g., communication between a client and a server
behind the corporate firewall can be passed in clear text, while connections from a mobile user calling through a
public network needs to be encrypted if it carries sensitive information. Reconfiguration of protection requirements
are therefore an important aspect of the software reuse process.

The implicit security constraints of a software component are by nature difficult to know in advance. We
therefore wish to confine these components to a restricted execution environment (a sandbox), where access to
system resources is limited to a strict minimum. It is important to note that components executing in their sandbox
cannot execute with the full privileges of the user who launched the application.

3. Protection Model

The protection model described in the following was originally developed for a distributed shared memory
system called ARIAS [6, 4]. Our preliminary experiences with applications written for ARIAS and discussions
with colleagues who develop the OLAN distributed application configuration language [1], has convinced us of its
general applicability for software reuse.

3.1. Access Control

The protection model follows the general capability model [7], and is based on the notions of capabilities,
protection domains, and cross domain calls.

Capabilities are tokens that identify a resource and specify a set of allowed operations. Anyone who whishes
to access a protected resource has to present a capability for that resource. Capabilities can be copied
(possibly with reduced access rights) and passed along to somebody else, providing them with access to the
resource.

Protection domains define the protection contexts of software components (i.e., the sandboxes). The access
rights of a protection domain are determined by a list of capabilities maintained for that domain.

Cross domain calls allow applications to call well defined entry points in components executing in another
protection domain. The interfaces of these entry points are defined in the Protection IDL, that extends the
IDL with protection statements. The PIDL is described in greater detail in 3.3. The PIDL definitions are
compiled into client and server stubs, that allow controlled transitions among software components.



Components are confined in protection domains, and allowed to directly access resources for which a capability
exists in the protection domain. A capability may be associated with either data or code, and grants read and/or
write access to data, and execute or cross domain call permissions for code. Capabilities that allow components to
perform a cross domain call are simply called domain capabilities.

Components interact through protection interfaces, which are specified separately for caller and callee in order
to support mutual suspicion between software components. The pair of stubs compiled from these interfaces
constitute the connector between the two components.

A configuration is determined in terms of capabilities and protection domains. Components are identified and a
minimal protection domain is defined for each component. This domain must contain access capabilities for data
that are directly accessed by the component and domain capabilities for the components with which it interacts.
The mechanism that allows safe transitions between protection domains is described in 3.3.

3.2. Protection Domains

The protection domain define the access rights of the component. It contains a list of initial capabilities held
by that domain, and a list of capabilities that have been added to the domain in order to temporarily augment its
privileges.

The ability to dynamically add capabilities to a protection domain means that the initial capability list of a
protection domain can be kept minimal, and new capabilities passed along with parameters as needed. In the
example of the postscript previewer, this would mean that all access to the file system can be initially denied.
When the previewer is launched, a read capability is passed along with the file name parameter allowing the
previewer to access this file only. Capabilities are normally added to a protection domain as a result of a cross
domain call, and revoked when the call returns.

3.3. Protection Interfaces and Cross Domain Calls

The protection interfaces defines the protection constraints of interactions between software components (cross
domain calls). It can control the way components interact in two ways: either by specifying the means of interac-
tions, e.g., data encryption using a secure RPC mechanism, or by defining the transfer of access rights between the
two domains, e.g., when a filename is passed as parameter, rights to access that file should be transferred as well.

The protection interface definition identifies the entry point, i.e, the name of the procedure to call in the re-
mote protection domain. Furthermore, it describes the parameters given as input or expected as output and the
capabilities that must be passed along with these parameters.

For all parameters to an entry point, the protection interface must specify the type and whether the parameter
is passed as input (IN), output (OUT), or both(INOUT). In addition to the direction of parameters, the protection
interface must also define any capabilities that are to be passed along with a parameter, these capabilities can be
of any type, i.e., read (CAPA_READ), write (CAPA_WRITE), or cross domain call (CAPA_DOM). Examples of
protected interfaces are shown in 4.2.1, 4.2.2, and 4.2.3.

The protection interfaces between all components are specified in the configuration of the application and
are transparent to the programmers of the components. Each programmer simply assumes that the necessary
capabilities are passed along with parameters when entry points in the component are called, and that the necessary
capabilities will be passed along with the parameters when entry points in other components are called. An
identification of the protection interface between two interacting components is embedded in the capabilities that
allow the components to interact, i.e. at execution time, the capabilities in the current protection domain decide
which protection interface should be used.

The task of configuring an application consists of specifying the protection interfaces, creating the different
protection domains, and adding the appropriate capabilities to the protection domains.



4. An Example of Protected Reuse

In the following we describe our experiments with different protection policies for a single software component.
The experiments were performed in a distributed shared memory system called ARIAS, that extends the shared
memory notion to a network of loosely coupled workstations.

4.1. ARIAS

In the following we describe ARIAS in order to define the context of our experiments.

4.1.1 Overview

The Arias DSM defines a persistent global address space where objects are uniquely identified by their virtual
addresses. The architecture of the Arias system is illustrated by figure 1.

Global Distributed Shared Memory

Permanent Store

Capabilities

Working Store Disk B (Node 3)Disk A (Node 1)

Applications
Node 2Node 1 Node 3

Threads

Figure 1. Overview of the Arias Distributed Shared Memory

The figure shows The Global Distributed Shared Memory in a network of three nodes (workstations). Node1
and Node3 both have disks, where permanent copies of regions of shared memory are stored. Each application
running on one of these nodes holds a number of capabilities that allow it to access regions of shared memory.

The unit of shared memory allocation in Arias is the segment, which is a contiguous set of virtual memory pages
identified by the base address. The size of a segment is fixed when the segment is created, and cannot subsequently
be changed. Segments are persistent, which means that objects created in the shared memory exist until the end
of time or explicitly destroyed. Persistent segments can be made permanent by storing them to disk, this prevents
persistent objects from saturating physical memory by saving them on stable storage, and freeing their physical
memory. Permanent segments are brought back into physical memory by demand paging.

Segments may be used to store either data or code. Data segments provide applications with a single level
store, and work much like memory mapped files (they are always mapped at the same address and do not require
an explicit open operation). Software components are developed using the system compilers (C, Ada, Fortran,
COBOL) and the binary object is then loaded into a code segment created for that component.



4.1.2 Access Control

Access to segments of shared memory is controlled by capabilities, that are verified the first time a component tries
to address a segment. All management and verification of capabilities is transparently performed by the system.

For data segments the system verifies that a capability for the segment exists in the protection domain of the
component, if it does the segment is mapped into the address space of the component process, otherwise a protec-
tion fault occurs.

For code segments the system first checks whether an execution capability exists for that segment (component),
if it does the segment is mapped into the address space of the component (this is the method for constructing
composite components) and external references are resolved, otherwise the system searches the protection domains
for a domain capability. If the system finds a domain capability it maps a client stub in the place of the real
component to perform a cross domain call. If no capability is found a protection fault occurs.

4.1.3 Execution Model

In general Arias applications are launched from Unix and execute as one or more Unix processes. All processes
that use the shared memory reserves the same large portion of their virtual address space for Arias, the size of this
reservation is a parameter that is fixed when the Arias system is installed. Entry points in components are accessed
through simple procedure calls, that the system transforms into cross domain calls when the protection domain
holds a domain capability instead of an execution capability.

4.2. Reusing a Simple Name Server

We have implemented a simple name server library that maps symbolic names to virtual addresses (unique
object references). This name server exports three entry points: create, add, and lookup, that respectively allow
creation of a new name server (allocation of shared memory and initialization), addition of new entries, and looking
up names in the name server. Prototypes in C for the name server functions are shown in figure 2.

void create(addr_t *ns, int elem_size, int no_elem);
void add(char *name, addr_t *addr);
void lookup(char *name, addr_t *addr);

Figure 2. Name server prototypes

We used this name server to experiment with implementation of different protection policies for the same
software component.

4.2.1 Application Specific Name servers

Most distributed applications contain a name server in some form or other, to map symbolic names onto physical
system entities (network servers, files, . . . ). The name server is an integrated part of the application that is allowed
to manipulate all entries freely. If all implicit protection constraints of the name server are known (it is a simple
component developed in house) an execute capability can be included in the protection domain of the caller, which
effectively links the library with the application. Otherwise, a protection domain must be created and the name
server called in that domain (note that the protection interface allows all operations and directly maps parameters).



void create(OUT addr_t ns, IN int elem_size, IN int no_elem);
void add(IN char *name, OUT addr_t addr);
void lookup(IN char *name, OUT addr_t addr);

Figure 3. Application specific name server

4.2.2 Protected Name Server

A system wide name service generally restricts access to its internal state. The protected interface shown in figure 4
allows clients to add entries and search entries, but not creation of new name servers. Furthermore, by restricting
access to name server data to well defined functions (specified in the interface), the consistency of the internal state
is ensured. In the example clients are allowed to add entries, but an error is returned if the name already exists in
the name server.

void add(IN addr_t ns, IN char *name, IN addr_taddr);
void lookup(IN addr_t ns, IN char *name, OUT addr_t addr);

Figure 4. Protected name server

This protection scheme is similar to the semantics of most object–oriented systems, i.e., internal data can only
be manipulated through exported operations.

4.2.3 Combined Name and Protection Server

The uses of the name server above allow components and applications to exchange references to data in the shared
memory, but not necessarily to share data. In order to access data the protection domain must hold a capability
for the corresponding segment of shared memory. In order to facilitate sharing of data the protection interfaces
have been extended to pass capabilities among protection domains. We simply add the key word CAPA_READ
following the direction clause, which specifies that a read capability should be passed along with the parameter.
When a component registers a name and address in the name server, a read capability is automatically passed to
the name server domain. This capability will be copied and passed along any component querying the name server
for that name. The interface used in the combined name and protection server is shown in figure 5.

void add(IN addr_t ns, IN char *name, IN CAPA_READ addr_t addr);
void lookup(IN addr_t ns, IN char *name, OUT CAPA_READ addr_t addr);

Figure 5. Combined name and protection server

4.2.4 Conclusions of Experiment

The separation of protection definitions and algorithmics allows us to implement highly different protection poli-
cies for the same software component. Furthermore, it allows us to manage all explicit protection constraints in
the protection interfaces.

5. Related Work

We have found no other work that explicitly targets the problem of protection in software reuse. However, there
are two current projects that work on ideas similar to ours (interface–based protection programming or protection
encapsulation of existing software).



The idea of specifying protection constraints in the interfaces of software components is being investigated by
the SOLIDOR project at IRISA, Rennes [3]. Their work focuses on specifying security policies for the interactions
among components, i.e., encrypted communication and authentication of remote entities. In this respect their work
complements the work presented in this paper.

The Janus system developed at Berkeley [5] allows untrusted programs to be confined, e.g., the WWW-browsers
external helper programs. The system works by filtering system calls issued from a program launched under Janus,
and only allows those calls according to a predefined protection policy, e.g., the system call open() is only
allowed for explicitly allowed files. The protection policy is defined in configuration files, and lacks the dynamism
provided by the use and transfer of capabilities in ARIAS. Furthermore, Janus confines entire programs and does
not allow different program components to be executed with different access rights.

6. Conclusions and Perspectives

In this paper we have presented a protection model for reusable software components. This model separates pro-
tection definitions from application code by managing protection specifications in the interfaces between software
components. This allows protection specifications to be changed without modifying the components themselves.

Our implementation of this model in ARIAS is based on capabilities and the ability to transfer capabilities along
with parameters in procedure calls. This allows us to define protection domains with few initial capabilities and
dynamically add capabilities to that domain as needed in order to enforce the need–to–know principle.

Our experiment shows that protection definitions can be successfully separated from the application code, which
allows multiple protection policies to be specified for the same software component.

We therefore believe that this is a convenient protection model for reusable software, and note that the model is
general, i.e. there are no inherent dependencies on the original DSM system.

A distributed shared memory system is a restricted platform for reusable software. We are therefore working
on a prototype, that implements the ARIAS protection model in a CORBA compliant Object Request Broker
(Orbix [11]). This implementation will allow us to experiment with a number of extensions to the PIDL, notably
concerning authentication and communication security.
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