Behavior-based Confinement of Untrusted Applications

Mandar Raje
Department of Computer Science
University of California, Santa Barbara

TRCS 99-12

January 1999

Abstract

In my thesis, I propose a class-specific sandboxing mechanism to confine un-
trusted applications. The key idea is to identify different application classes like ed-
itor, browser, mail client, shell, filter, server etc and to confine applications belonging
to each class in a sandbox that is tailored to the expected behavior/requirements
of the class. For example, the sandbox for a MIME-mail client could be restricted
to allow it to spawn only a set of helper applications explicitly listed in the mail-
cap file; the sandbox for an editor could be restricted to disallow network accesses
and process creation. Such a mechanism retains the ease-of-use of sandboxes while
significantly increasing their flexibility. End-users do not need to maintain complex
access control lists or interact frequently with the security subsystem; nor do they
need to depend solely on a digital signature. They can configure their systems by
specifying the set of classes they would like to allow.

To evaluate the feasibility of my proposal, I have: (1) defined a set of application
classes and have populated them based on a study of system-call traces of commonly
used applications; (2) implemented a infrastructure that uses the /proc-interface to
confine native binaries; (3) developed configuration files for the different application
classes that I have encountered; (4) have integrated this infrastructure with an X
proxy that confines untrusted X applications to windows and other X resources that
it creates (and a small number of global attributes); (5) evaluated the overhead

introduced by this mechanism.

Contents

1 Introduction 4
2 Study of Application Behavior 7
2.1 Workload e 7
2.1.1 Editors e e e e 8

2.1.2 Viewerso i i e e e e e e e e 8

213 Compilers 8

2.1.4 Mailers e e e 8

2.1.5 Newsclient 9

2.1.6 Browsers e e e e 9

2.1.7 Shells e 9

2.1.8 Network Clients 9

2.1.9 Other applications, 10

2.2 Collection and analysis of traces 10
2.2.1 Example: fingerclient 12

222 doorcalls 14

223 Thepwdpattern oL, 15

2.2.4 Communication with the X server 15

2.2.5 Other patterns oL 16

3 Confinement Configuration Language 17
3.1 AbstractionLevel 17
3.2 Constructs. e e e e e e e e 18
321 path 18

3.2.2 rename e e e e e e e e e e 20

3.2.3 conmect e e e e 20

3.24 accept e e e e 21

325 putenv e 21

3.26 Displayo 22
3.2.7 childbox 22
3.2.8 Non-configurable system calls 22
3.2.9 Other considerations L. 24
3.3 Example configuration L oL L 25
3.4 Related work L 26
Behavior Classes 28
4.1 Symbolic Constants L 28
4.2 Behavior Classes o e 29
4.2.1 filter L e 29
4.2.2 transformer (input, output) 30
4.2.3 compiler (directory / list of files, libpath, output) 30
424 editor (dir/list of files) 31
4.2.5 wviewer (directory / list of files) 31
4.2.6 download (host, dir, port) 31
4.2.7 upload (host, dir, port) L oL 32
4.2.8 mail client (mailboz) 32
4.2.9 browser (list of hosts, port) 32
4.2.10 information provider(list of hosts, dir, port) 33
4.2.11 server(list of hosts, dir) 33
4.2.12 shell (mapfile, list of behaviors) 33
4213 gameo e e e e e 33
4.2.14 appleto e e 34
4.3 Relationships between classes 34
Implementation 36
5.1 Interception mechanism 36
5.2 Handlers e e 38
5.3 Flowofcontrol L o 39
5.4 Intercepted systemcalls 40
541 path 40
54.2 connect,accept L Lo o 41
54.3 putenv, childbox 0 o oo 42
5.5 Special caseso e 42

5.6 X protocolfilter. L

5.6.1 Resourceso e e e
5.6.2 Potential problemso oo
5.6.3 Xfilter
5.7 Usage . . . o v i i e e e e e

6 Performance Evaluation

6.1 Experimental Setup 0L
6.2 Timing the components
6.3 Micro-benchmarks oo L.
6.4 Macro-benchmarks Lo oL L oL
6.5 Conclusions i e e

7 Related Work

7.1 Interposing Agents
7.2 Confinement. L e
7.3 Intrusion Detection Systems oL L.
7.4 Javasecurity e

8 Discussion

8.1 Usage o i i e e
8.2 Running applications under mapbox
8.3 Assumptionsl

9 Conclusions
A Handling system calls
B Configurations for Applications

C Handling X protocol requests

47
47
47
49
52
54

56
56
o7
59
59

61
61
62
63

65

67

70

84

Chapter 1

Introduction

In the fall of 1988, a graduate student at Cornell University introduced a computer
worm in the Internet. It replicated uncontrollably for several days. Eventually, it
infected over six thousand computers nationwide and overwhelmed their processing
capabilities. The worm exploited three major weaknesses of Unix systems. The first
of these was in fingerd. The bug involved overwriting the daemon’s input buffer,
which resulted in transferring control to a shell that was controlled by the worm.
The second weakness was in sendmail. By using sendmail’s debug option, the worm
issued a set of commands instead of user addresses. The third major weakness was
poorly chosen passwords and the fact that most of the encrypted password files were
publicly readable.

In another incident, a remote administrative tool called Back Orifice was devel-
oped for Windows. This tool is distributed in the form of a trojan horse. Once it is
installed, a remote operator anywhere in the Internet can gain access to the system
and can do anything that the user can do — all without any outward indication of
her presence. She can change, delete or rename files, change preferences, change
the window registry or can trash it altogether. Every time the infected system is
booted, this tool started itself and listened on a port for commands.

In both these incidents, an untrusted program which somehow managed to run
on user systems as a user process, attacked the user systems. By untrusted, we
mean a program originating from a different administrative domain than that of the
user with whose identity it runs. Today, running such programs is central to many

technologies and applications. Some of these applications are as follows:

e Web servers often execute cgi-scripts while serving http requests. Users like

4

to install their own programs, scripts (games, for example) on web servers
so that they can be accessed through browsers. The commercial drive to
customize web content makes extensive use of CGl-scripts. Here cgi-scripts

are the untrusted programs which run in the server’s environment.

e Audio and video data on the Internet comes in a variety of formats. Each
comes with its own installable plug-in, a program that understands it. These
programs need to access the audio or video devices and display information
like fonts, colormaps, etc.

e The text documents that we download do not always contain passive data.
For example, Microsoft word documents contain macros, which must be in-
terpreted by the system of the user downloading the document; Postscript,
is a language in itself. Downloading and viewing the documents amounts to

running untrusted programs.

e MIME (Multipurpose Internet Mail Extensions) is designed to represent a
variety of data formats. Data with these multiple formats can be sent over mail
and can be viewed by de-multiplexing the documents to helper applications.
MIME-enabled mail clients can execute shells, T'cl and other external programs
such as ftp.

e The goal of global computing systems [19] is to allow different users to par-
ticipate in very large computations by downloading code from brokers and
running it on their systems. This way, large applications can make use of
thousands of idle machines in the Internet. The applications need memory

and network access.

e The evolution of active networking research will permit installation of network
services inside the network fiber. The idea is to process data as it passes
through the network. This allows network services (format converters, filters,
etc) to be installed at the intermediate network nodes. For this technology
to evolve, services developed must utilize router resources and occasionally
reroute the packets they process. Network services might use the network to
dynamically load the code or they might use the filesystem to save state of

the packet belonging to the same application.

In all these scenarios, systems need to run untrusted processes. Security mech-

anisms for such processes usually choose to be conservative and deny access to all

5

but a few local resources (eg.Javal.0 [6]). Condor [27], for example, migrates system
calls to the original host and limits access to local resources. This limits the set of
applications that can be executed.

The goal of the work discussed in this dissertation is to develop a more flexible
mechanism to control accesses to local resources. Instead of applying a uniform
security policy to every untrusted application, we believe that applications can be
partitioned into different classes based on their behavior such that a separate security
policy is used for each class.

To understand the behavior of applications and to determine the resources they
need, we analyzed system call traces of a variety of applications. We collected
the information about the files accessed, libraries linked, binaries executed, display
usage, environment variables. We used this information to define behavior classes
such as filter, transformer, compiler, editor, viewer, mailer, browser, server, shell
and determine the access control and resource requirements for each class.

We have designed and implemented a confinement mechanism which monitors
untrusted applications by intercepting calls they make. Each application is confined
in the confinement environment for its class. Individual requests are allowed or
denied based on the class specification. Such a mechanism retains the ease of use of
more restrictive mechanisms (such as Javal.0) since users only need to specify the
behavior classes they wish to allow. Users do not need to maintain complex access
control lists, nor do they need to depend solely on digital signatures. Note that class-
specific confinement can be combined with digital signatures for accountability.

In chapter 2, we describe the study of applications. In chapter 3, we describe
the language used to specify the confinement configurations for application classes.
In chapter 4, we describe the application classes we have identified. In chapter 5,
we describe a framework that uses confinement configurations to control access re-
quests made by untrusted applications. In chapter 6, we talk about the performance

overhead introduced by such a mechanism. In chapter 7, we discuss related work.

Chapter 2

Study of Application Behavior

To understand the behavior of applications we studied their system call traces.
We summarized the low-level operations recorded in these traces to form higher-
level operations such as (1) accessing files (2) linking libraries (3) making network
connections (4) accepting network connections (5) forking processes (6) handling

signals.

2.1 Workload

While conducting the study, we considered different functions that each application
is capable of performing. Applications need different resources while performing
different functions. A finger client, for example, reads the passwd file only if a
domain name is not specified, which in a normal case it would not access. We first
describe the workloads we used for different applications. We then describe how we
summarized the resulting traces.

To design the workloads, we started with an intuitive notion of application be-
havior classes such as: editors, viewers, compilers, mailers, etc. For each class, we
defined a series of workloads in increasing degree of complexity. This facilitates
the analysis; once we have analyzed the less complex behaviors the more complex
behaviors are easier to analyze. For example, we first analyze a trace of an editor
invocation that does not edit a file. It provides the information about the initial-
ization segment of the editor. Once we have this information, it becomes easier to
observe other resources that the editor needs in order to edit a file. In the following

section, we list all applications that we study and the workloads for each of them.

2.1.1 Editors

We studied three text editors vi, pico, xemacs and two graphical editors idraw,
xfig. The workloads for editors were: (1) start up an editor and exit; (2) start
up with an existing file and exit; (3) start up the application with an existing file,
modify and exit; (4) for text editors, edit a file, spell-check it and exit; (6) for
graphical editors, generate a postscript file and exit.

Many editors are capable of performing other functions, eg. emacs can run a
debugger, interact with a shell, etc. We did not consider these functions relevant to
the editor behavior and therefore did not include them in the workloads. On the
other hand, spell-checking is useful functionality for text editor and we included it

for our work-load.

2.1.2 Viewers

We studied two document viewers: ghostview, pageview and two image viewers
xview, imagetool. The workloads for the viewers were: (1) start up a viewer
application and quit; (2) start up an application with an existing file and quit; (3)
print a file; (4) change the orientation of (document) file or the size of an image
file; (5) save an image in a file; (6) for image viewers, grab a region, try one of the
algorithms (o0il painting, for example). There are many image processing algorithms
which can be applied and we found that these algorithms have the same resource

requirements.

2.1.3 Compilers

We studied five compilers: cc, gcc, c++, £77 and javac. The workloads were:
(1) invoke a compiler without any file; (2) compile a source file into an object file;
(3) compile a source file into a binary file; (4) compile a file and link some object
files; (5) compile a file that uses libraries; (6) compile a file and link it to libraries;
(7) compile multiple files.

2.1.4 Mailers

We studied two mailers: pine and elm. The workloads were: (1) open and close an
empty mailbox; (2) open and close a mailbox with one message; (3) delete one (the
only) message in the mailbox; (4) list a mailbox with multiple messages; (5) refile

a message, with mailbox empty and not empty after the refile; (5) send an existing

8

file; (6) send a message with and without using an alias; (7) forward a message; (8)

reply to a message.

2.1.5 News client

We studied one news client trn. The workloads were: (1) start up the newsreader
using default profile and exit; (2) get the headers new news in one news group and
exit; (3) get the headers of one news group, read all messages of that news group

and quit; (4) subscribe to a news group; (5) unsubscribe to a news group and quit.

2.1.6 Browsers

We studied three browsers: lynx, netscape and hotjava. The workloads were:
(1) start a browser with no arguments and quit; (2) start a browser with a known
page and quit; (3) start a browser, follow one html link and quit; (4) follow one .ps
link, quit ghostview and quit the browser; (5) follow one .tar.gz link, download a
file and quit.

Browsers are capable of spawning helper applications (ghostview, xview). We
believe that the pattern for spawning all these applications will be similar. We did
not analyze the traces produced by the helper applications when we studied the

browsers; these applications were studied as a part of their own classes.

2.1.7 Shells

We studied three shells sh, csh and tcsh. The workloads were: (1) start a shell
without reading profile files and exit; (2) start a shell in the default mode and exit.
(3) use a shell for filename completion; (4) use a shell history; (5) run a simple shell

script. (7) use pipes, redirection and background operators;
2.1.8 Network Clients

ftp client

We studied the Solaris ftp client in the following situations: (1) login to some ftp
server and log out; (2) list a set of files on remote server using 1s; (3) download

multiple files on local machine; (4) upload multiple files.

finger client

We studied the Solaris finger client in the following situations: (1) finger without
arguments; (2) finger mraje@cs.ucsb.edu (local domain); (3) finger acha@cs.umd.edu

(remote); (4) finger acha@cs.umd.edu mraje@cs.ucsb.edu; (5) finger -1 mraje@cs.ucsb.edu.

telnet client

We studied the Solaris telnet client in the following situations: (1) telnet to a remote
node and exit; (2) telnet to a remote node, read a file and exit; (3) telnet to a remote

node to port 80 and exit.

2.1.9 Other applications

We also studied a suite of other applications: ical, xcalc latex, make, xbiff,

xclock and xterm.

2.2 Collection and analysis of traces

The traces were collected using a system command called ¢russ. The argument to
truss is an executable or a process-id. It executes the command or attaches itself
to the process with the specified id. It produces a trace of system calls the process
performs, the signals it receives, and the machine faults it incurs. Each line of the
trace output reports either a fault, a signal name or a system call name with the
arguments and return values. It can also trace system calls made by all children of
this process.

We summarized these traces by identifying groups or patterns of system calls
and relating them to higher-level operations. In some cases, to verify the mapping
between a higher-level operation and the system calls it generates, we wrote small
programs and compared their traces with that of the application being studied.

Table 2.1 lists all the applications and also gives the length of the trace for each
application. The lengths are given for the simplest behavior. For the most part,
traces are composed of the patterns that we discuss in the next section. We discuss

additional (relatively rare) patterns in the subsequent sections.

10

Application Class | Application | Lines in traces
Text Editor vi 210
pico 187
emacs 567
Graphics Editor | xfig 1352
idraw 1236
Browser lynx 230
hotjava 36988
netscape 25044
Viewer xview 2828
ghostview 6420
Mailer pine 747
elm 803
Newsreader trn 454
Shell ksh 157
sh 274
Compiler cc 277
gce 265
g++ 609
javac 6174
Network client finger 130
telnet 412
ftp 253
Other apps. dvips 1054
latex 2256
make 230

11

Table 2.1: Length of system call traces for some applications.

open("/usr/lib/libsocket.so.1", 0_RDONLY) =3

fstat (3, OxEFFFEAQQ) =0

mmap (0x000000, 8192, PROT_READ, MAP_SHARED, 3, 0) = OxEF7B000
mmap (0x000000, 8192, PROT_EXEC, MAP_PRIVATE, 3, 0) = OxEF7900
close (3) =0

Figure 2.1: Loading a library.

2.2.1 Example: finger client

We present the process of summarizing system call traces using the trace for the
Solaris finger client as an example. Most of the patterns in the traces are straightfor-
ward. We can determine what the application is trying to do just by observing the
pattern. Patterns that fall in this category are loading of dynamic libraries, network
communication using sockets, creating a process, reading-writing files, setting signal

handlers, and polling the standard input.

Loading libraries

Figure 2.1 presents an example using libsocket.so.1. This pattern represents the
process of linking the dynamic library. The open call opens the library file. The
fstat call obtains the information about this file. The pair of mmaps map the library
into the process’s address space; close closes the file. This shows how dynamically

linked libraries are mapped into a process’s address space.

Accessing network configuration file

Figure 2.2 presents a trace fragment illustrating the pattern. The netconfig
database contains information about networks that are connected to the system.
The open call opens it for reading, the fstat gets its file system information. The
sequence of reads and 11seeks is where the file is actually read. Finally, the file is

closed.

Network communication

This pattern is illustrated in Figure 2.3. The client connects to the finger daemon

using the so_socket and connect system calls. This creates a socket descriptor (4)

12

open("/etc/netconfig", 0_RDONLY) =3
fstat64(3, OxEFFFE638) =0
read(3, "#n # The " Net".., 8192) = 1064
read (3, 0x00029D5C, 8192) =0
1llseek(3, 0, SEEK_CUR) = 1064
1lseek(3, 0, SEEK_SET) =0
read(3, "#n # T h e "Net".., 8192) = 1064
read (3, 0x00029D5C, 8192) =0
1llseek(3, 0, SEEK_CUR) = 1064
close(3) =0
Figure 2.2: accessing network configuration file.

so_socket(2, 2, 0, "", 1) =4
connect (4, 0xEFFFED40, 16) =0
write(4, "mr a j e", 5) =5
write(4, "rn", 2) =2
read(4, "Login mname: ".., 8192) = 401
read(4, " No wunread ma".., 8192) = 331
read (4, 0x0002CF2C, 8192) =0
1llseek(4, 0, SEEK_CUR) Err#29
close(4) =0

Figure 2.3: communicating on the network.

13

1llseek (0, 0, SEEK_CUR) = 6928
write(l, " [cs . ucsb.edu".., 728) = 728

Figure 2.4: printing results.

open64("/etc/.name_service_door", O0_RDONLY) =
fcntl(3, F_SETFD, 0x00000001) =
door_info(3, O0xEF6A9370) =
door_call(3, OxEFFFCA98) =

O O O Ww

Figure 2.5: communication using door.

which is used to communicate with the server. The next two writes send the
user-id (mraje) and the domain name (cs.ucsb.edu) arguments to the server. The
subsequent reads correspond to the result of the query. Once all the data is read,

the socket is closed.

Print results

Once the application (finger client) has all the information, it prints it on stdout.

This is illustrated by pattern in figure 2.4.

2.2.2 door calls

Door is a family of system calls that provides a new flavor of interprocess com-
munication between processes on the same hosts. The file
/etc/ .name _service_door is a door to the naming service cache daemon (nscd).
The nscd provides caching for passwd, group and hosts databases through standard
libc interfaces like gethostbyname and gethostbyaddr. Calls to these interfaces
get translated into door calls. In the context of the current application, door_call
is trying to find the IP address of the host ’cs.ucsb.edu’. To understand more about
door calls, we wrote a short program that calls gethostbyname, gethostbyaddr,
getgrnam, and getpwnam and observed the traces for this program. These traces
had a common door pattern (shown in figure 2.5). The type of the function invoked

at the server end is passed within a compound argument, and is not visible in the

14

stat64("./", 0xEFFFC620)
stat64("/", OxEFFFC588)

open64("./../", O_RDONLY|O_NDELAY)
fentl (3, F_SETFD, 0x00000001)
fstat64(3, OxEFFFBC30)

fstat64(3, O0xEFFFC620)
getdents64(3, 0x0005A014, 1048)
close(3)

open64("./../../", O_RDONLY|O_NDELAY)
fentl(3, F_SETFD, 0x00000001)
fstat64(3, OxEFFFBC30)

fstat64(3, O0xEFFFC620)

getdents64(3, 0x0005A014, 1048)
close(3)

(@]

O O O Ww

608

o

O O O W

280

Figure 2.6: pwd pattern.

2.2.3 The pwd pattern

'pwd’ and found it to be similar.

2.2.4 Communication with the X server

received using read and readv system calls.

15

This pattern consists of directory reads, starting with the current working di-
rectory and going one step at a time to the root directory. See figure 2.6 for an
abridged version. It gets the information about each directory in the path and all

files in it using getdents. We compare this pattern with that of system command

One trace generated when an application connects to the X server is shown in
figure 2.7. Applications use /tmp/.X11-pipe, a FIFO, to communicate with the X
server. The connection with the X server is established with the open system call.

X requests are sent with write and writev system calls and replies and events are

open("/tmp/.X11-pipe/X0", O_RDWR) =9
fstat (9, OxEFFFC970) =0
fcntl(9, F_SETFD, 0x00000001) =0
writev(9, OxEFFFCECO, 4) = 48
fstat64(9, OxEFFFCD50) =0
fentl(9, F_SETFL, 0x00000080) =0
read (9, "0100/v/0/0/0 D", 8) =8

Figure 2.7: X communication pattern.

2.2.5 Other patterns

There are some patterns idiosyncratic to individual applications. For example the
Solaris C compiler opens a socket to a licence server to check licensing information.
Other compilers (eg. gcc) do not generate such a pattern. In the definition of
application behavior classes we ignore these patterns, as we believe they are not a

part of the core functionality of the applications.

16

Chapter 3

Confinement Configuration

Language

In this chapter, we describe the language we use to specify the resource constraints
for different application classes. Resource constraints can be specified at the indi-
vidual system call level or at the resource level. In the first section we describe the
choices for the abstraction level. Next, we describe the language we use, using BNF
notation and the constructs in the language. We present a sample configuration in
section three. In the last section, we discuss other languages and their relation to

our proposed language.

3.1 Abstraction Level

Since all resources are accessed using system calls, one alternative for a configuration
language would be to allow or deny individual system calls. For example, if a user
wants to protect the file /etc/passwd, she can specify that certain calls (open,
access, stat, creat, chmod, link, unlink, symlink) are to be denied when
the file argument is /etc/passwd. The other alternative is to specify access-control
at the level of individual files, hosts, ports, display, etc. Allowing the user to specify
access controls for individual system calls provides flexibility at the cost of being less
intuitive. However, our analysis of system calls traces indicated how this additional
flexibility is not useful and the access controls at the resource-level for most of the
part are adequate. As a result we have chosen to base our language around resources

instead of system calls.

17

Commands Resource

path,rename File system

connect,accept | Network, Display

putenv Environment Variables
childbox Process’s child

Table 3.1: Mapping between commands and resources

3.2 Constructs

The language consists of six constructs, each one controlling a resource. Table 3.1

gives the mapping between the commands and the resources.

The grammar for the language using BNF notation is given in figure 3.1.

3.2.1 path

The path command controls access to the file system. Each path command makes
a part of the file system visible or invisible, by either allowing or denying access to
the files or directories provided as the arguments. The usage is:

path allow | deny mode-list pathl path2 ...

The mode-list consists of read, write and exec. All combinations of these modes
are allowed. Currently, all relative pathnames are disallowed. Many applications,
however, need the working directory and therefore, make stat calls with relative
pathnames, which are denied. This problem can be remedied by providing pwd as a
system call. Use of wild cards is also allowed for specifying the path argument. For
example:

path allow read,write /tmp/*

allows the process to read and write to all descendents of /tmp.
Figure 3.2 illustrates the use of path. It presents the path commands for the

Solaris finger client.

18

command

path_c
rename._c

connect_c

accept_c

putenv

childbox
permission
access_modes
access_mode
dir_list

dir_pair_list

:= path_c | rename_c | connect_c | accept_c | putenv_c |
childbox ¢
path permission access_modes dir_list
:= rename dir_pair_list
:= connect permission protocol ip_addr ”:” port_addr
| connect allow display
:= accept permission protocol addr_list ”:” port_addr
:= putenv name_val list
| putenv DISPLAY
:= childbox class
:= allow | deny
» »

:= access_modes ”,” access_modes | access_mode

= read | write | exec

directory dir_list | directory
dirl dir2 dir_pair list | dirl dir2

protocol = tcp|udp|*

addr_list = ip_addr addr.list | ip_addr

ip_addr = dot_addr ”/” dot_addr | dot_addr

port_addr := port_num port_mask | port_num | /* empty */

Figure 3.1: Grammar for the language using BNF notation.

path allow read /dev/zero
path allow read /etc/netconfig /etc/.name_service_door
path allow read libsocket.so.l libnsl.so.1l libsec.so.1 libc.so.1
path allow write /dev/zero
path allow read,exec /usr/bin/finger

Figure 3.2: Configuration for finger client.

19

3.2.2 rename

A lot of applications access files like /etc/passwd, /etc/utmp, /etc/services which
contain sensitive information. The applications are designed to check the existence
of such files using the access system call. It is potentially dangerous to let applica-
tions read these files. The solution we propose is to trick applications into reading
some other files in place of the original files. This is done using the rename com-
mand. The syntax is:

rename filel newfilel [.... filen newfilen]

When an application tries to access filel, it is replaced by newfilel and the process
is allowed to continue.

rename /etc/passwd /tmp/dummy

In the example above, rename will result in all accesses to /etc/passwd being redi-
rected to /tmp/dummy. Note that this approach does not always work. For ex-
ample, applications such as pine and lynx access /etc/passwd to find out the
login-id of the user running them and cannot work when the accesses to passwd are

redirected.

3.2.3 connect

This command controls the network connections made by the application. The
connections are granted or denied based on the IP address of the destination and
its port number. The syntax is:

connect allow|deny tcpludp|* ip-addr[/ip-addr-mask] [:port[/port-mask]]

For example,
connect allow udp 128.111.40.28

allows all udp connections to the host with 128.111.40.28. In another example,
connect allow tcp 128.111.52.15:8080

allows only tcp connections to 128.111.52.15 on port 8080 (web server). In addition,
masks can be used to match a range of IP addresses. The matching algorithm takes
the requested IP address, bitwise ANDs it with the mask, and tests whether the
result is equal to the ip-addr field. i.e.

connect allow tcp 0.0.0.0/0.0.0.0:80

20

allows all tcp connections to port 80 at any IP address, and
connect deny * 128.32.0.0/255.255.0.0

disallows all connections (tcp or udp) to any port at any IP address of the form

128.111.x.x. Note that IP addresses must be used, domain names are not allowed.

3.2.4 accept

The accept command is similar to the connect command. It controls server appli-
cations. It specifies the hosts that are allowed to connect to the server application.
The usage is:

accept allow/deny tcp/udp (ipl, ip2, ..., ipn)/* :port[/port-mask]

The example which allows two specific hosts to connect is:
accept allow tcp 128.122.52.15 128.111.40.28

In addition, we can specify the port the server application can listen on. A special
value for the port field is NON_SYSTEM PORT, which means the application must
select a port which the system is currently not using. If port number is omitted,
then server can listen on any port. The arguments consist of the protocol string, tcp
or udp, and a list of IP addresses a server can accept connections from. Wildcards
can be specified to indicate that the server is allowed to accept connection from any

host and any port.

3.2.5 putenv

The untrusted application’s execution environment can be controlled using the
putenv command. The syntax is:

putenv name=value

This manipulates the untrusted application’s environment. Here name is the name
of the environment variable and the value is the value we want it to be set to. For
example,

putenv PATH=/usr/bin:/usr/local/bin/

sets the PATH environment variable. In the above example, putenv command sets
the PATH for the confined programs. Providing appropriate values for PATH is im-
portant, since the application is allowed to run binaries from the directories in the
PATH. Other important environment variables include LIBDIR for libraries, HOME

21

which is the home directory for untrusted application and TMP which points to the
temporary directory. All environment variables must be explicitly included using

putenv.

3.2.6 Display

We can enable access to the display by using two separate commands. First, we
need to set the DISPLAY environment variable, because it determines where the
application connects, to communicate with the X server. We achieve this using the
putenv command in the following way:

putenv DISPLAY=unix:4

The next thing is to allow connection to the X server. We use connect command in
the following way:

connect allow display

This would allow connections to the X filter xbox. The xbox, interposed between X
clients and the X server, selectively filters the requests generated by the clients. We
provide an application independent X access control policy of confining applications

to access their own resources.

3.2.7 childboz

Several applications spawn child processes as a part of their operation. These pro-
cesses may belong to a different application class than their parent. For example,
helper applications spawned by browsers are usually viewers. We can use childbox
command to specify the child configuration. The usage is:

childbox class

For example:

childbox viewer
indicates that all processes spawned by the process being confined are confined in a
viewer confinement environment.

3.2.8 Non-configurable system calls

The constructs described in the previous section control access to the filesystem, net-

work and environment. There are other resources provided by the operating system

22

which cannot be specified using this language. Examples include signals, threads,
doors and memory. For all these resources, a common application-independent
access-control policy is used. For some of these resources like signals and memory,
the security provided by the operating system is sufficient. Others like doors, ioctls
and fcntls are selectively allowed based on the arguments. Only the calls that we

were able to ensure to be safe are allowed.

e The door calls are primarily used to query information from the host, group

and password databases. We allow interaction only with the host database.

e System call fcntl provides control over open files. The call looks like: int
fcntl(int fildes, int cmd, /* arg */ ...);

The available values for cmd include F_ DUPFD, F_ GETFD, F_ SETFD, F_ GETFL,
F_SETFL, F. GETOWN, F_.SETOWN and other values.

F_DUPFD, F_DUP2FD which return new file descriptors and F_GETFD,
F_SETFD which read and write file descriptor flags are allowed. We have

not seen a need for the remaining flags and have, as a result, disallowed them.

e The call acl can get or set a particular file’s access control list. The filename
is provided as one of the arguments. Clearly, changing the access control list
by untrusted applications is not safe, so we disallow that. Two other options
are reading access control list or reading the number of entries in the list, both

of which are allowed.

e The call ioctl performs a variety of control functions on devices and streams.
Handling ioctls requires a good understanding of the devices and their controls.
Currently, we allow a small number of ioctls that we have seen a need for and

that we have determined to be safe. We disallow all other ioctls.

e Calls like read, write, lseek are never monitored since the protection pro-
vided by monitoring open is sufficient. Similarly the calls related to memory
mapping like mmap, munmap, mcntl and calls related to the signals, signal,
and sigaction for example, are not monitored since the protection provided
by the operating system is sufficient.

e System calls that can be invoked only by the processes with super-user privi-

leges (eg. mount, umount, plock, acct, etc.) are denied.

23

3.2.9 Other considerations

In this section we discuss a few additions we have made to our language, in order

to make it more configurable.

Home directory

We observe from the traces that a lot of applications use .rc files to store user pref-
erences across invocations. For example csh uses .cshrc file which contains the initial
configuration, the initial values for the environment variables, command aliases, etc.
Many of the applications also need some file system space to create, read and write
temporary or permanent files. To cater these needs, we allow applications to have
their own HOME directory. They can read or write into this directory. The home
directory can be set using the set command. For example,

set HOME /usr/home/mraje

sets the home directory to /usr/home/mraje. The question that arises is, what
happens to the files written by the application after it completes the execution. We
let the user decide whether to keep those files on the disk or to erase them after the

application has executed.

Defining symbolic constants

To make the configurations portable across multiple platforms, we provide a set of
symbolic constants that a user can define in a site specific manner. For example,
if an application is allowed to access the network then it must read some files and
load some libraries which provide the socket calls. For Solaris 2.6 these files would
be /etc/netconfig and /etc/nsswitch.conf and libraries would be libsocket.so.1 and

libnsl.so.1. We specify these files using the following primitives:

define _NETWORK_READ /etc/netconfig /etc/nsswitch.conf
define _NETWORK_LOAD /usr/lib/libsocket.so.l /usr/lib/libnsl.so.1

Now when defining applications, a user can use the symbolic constants like NETWORK _READ
and _NETWORK_LOAD instead of specifying all the files. Other constants defined
are COMMON PATH, COMMON_READ, COMMON _WRITE, COMMON_EXEC,
COMMON NETWORK READ and COMMON _X READ. All such constants are
defined in a single file which can be used in creating a configuration file for ap-

plications. All the site specific details can be put into this file, which makes the
24

configuration file for application finger client

syntax: finger username@hostname

can set the home to save states after execution.
set _APP_HOME /tmp

putenv PATH=_COMMON_PATH
putenv HOME=_COMMON_HOME
putenv LD_LIBRARY_PATH=_DEFAULT_LD_LIBRARY_PATH

includes the default directory for read, write and execute.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow exec _COMMON_EXEC

network read set for accessing network.
path allow read _NETWORK_READ _NETWORK_LOAD

#should be allowed to connect to IP addresses
specified in the definition.
connect allow tcp 128.111.0.0/255.255.0.0:79

Figure 3.3: Configuration for finger client.

configurations portable across platforms. Users are free to create new symbolic

constants, if needed.

3.3 Example configuration

We now present a complete configuration of the finger client using the language we
have proposed (figure 3.3).

The configuration starts with the set command which sets home to /tmp, thereby
allowing a finger client to read or write into /tmp. Using the putenv commands the
environment for the finger client is set. Most of the commands are self explanatory,
except the connect command. It is configured so that the finger client can connect

to any host inside cs.ucsb.edu domain and can only connect to port 79, where the

25

finger daemon is supposed to be running.
We describe the configurations for different application classes in the next chap-

ter.

3.4 Related work

In this section, we briefly describe languages proposed by other researchers and
compare their approach with ours.

Janus, which is a system developed at Berkeley, is designed to confine the helper
applications spawned by browsers. QOur language is based on the configuration
language of Janus. We use the path, connect and putenv constructs which are
originally proposed by them. To this, we have added the rename, accept and childbox
constructs.

In an alternative approach, Ko and Fink at UC Davis present a method for
detecting exploitations of vulnerabilities in privileged programs by monitoring their
execution using audit trials. For controlling access to the filesystem, they define
a set of operations on files viz. read(file), write(file) and execute(file). To allow
an application to read the file /etc/netconfig we would say: read(”/etc/netconfig”).
They also associate certain attributes with a file which are: its name, its uid, its gid
and its access modes. Additional constraints can be specified using these attributes.
For example, we can specify:

exec("/usr/bin/mail") :- U.uid = 0;

For the network part, Ko and Fink have a command bind which is similar to
our connect. For example, bind(25) will ensure that a mailer connects only to a
mail port, and nowhere else. Since they focus on local privileged applications, they
do not verify the IP address. They also don’t differentiate between the client and
server behavior of the applications. They do not provide any support for monitoring
accesses to the display. On the other hand, their language is more powerful than
ours as it allows regular expressions and predicate logic.

In USTAT [4], which was developed at UCSB, penetrations are represented by
state diagrams. The system predefines sets of files. The sets are are Restricted read
files, Restricted write setup files, Files authorized to read Fileset, Non-writable file
executables etc. Using these sets, they define various intrusion scenarios in form of a

table or state transitions which at runtime can be matched against the audit trails to

26

find out a possible attack. The language is limited to specifying conditions in terms
of files and user-ids and group-ids. The system is being extended to detect network-
based intrusion detection (Netstat). A language for state transition representation
of scenarios in intrusion detection systems is also being developed at University of
California [20]

Several other researchers have proposed languages to allow users to specify
access-control policies and framework to compose these policies [14] [15] [16] [17].
Three of them [15] [16] [17], propose logic-based declarative languages and use in-
ference mechanisms of various sorts to compose policies. Blaze et al. [14] propose a

language that contains both assertions and procedural filters.

27

Chapter 4

Behavior Classes

This chapter describes the behavior classes we have identified. We started the task
of identifying behavior classes with an intuitive notion of program behaviors. We
refine the classes based on the information gleaned from system call traces. Most of
the behavior classes are defined with parameters. The parameters limit the scope of
the applications. For example, an editor is parameterized with a set of files which
it can edit. Those are the only files the editor is allowed to edit. Similarly, the class
network client is parameterized by the port it is allowed to connect to - a mailer
can be restricted to port 25, whereas a finger client can be restricted to port 79.
We first describe the common symbolic constants used by many configurations. We

then describe the classes we have identified.

4.1 Symbolic Constants

As discussed in the previous chapter, we allow every untrusted application to have
its own directory called home directory. The application can read or write any
file in that directory. Also, there are some environment variables like PATH,
LD_LIBRARY_PATH, some libraries and files that are common to the applications.
They are defined separately as symbolic constants and those constants can be used
to specify the configurations of individual classes. This makes the individual con-
figurations portable. Please see Appendix B for the values of these constants for
Solaris 2.6.

COMMON_PATH: This is the common value for the PATH environment variable.

This is the path along which the executable will be searched, when exec is called.

28

By default COMMON_PATH is set to the home of the application.

COMMON_LD_LIBRARY _PATH: This is the common value for the
LD_LIBRARY PATH variable. This is the path along which the libraries are searched.

For Solaris 2.6, it is set as:
define COMMON_LD_LIBRARY_PATH /usr/lib:/1ib:/usr/ucblib

Note that the actual libraries that can be loaded are still decided using the path

command.

COMMON_READ: This is the common set of files that can be read, and the
common set of libraries that can be linked. By default, all applications are allowed
to read files from their home directory. So home directory is included in this set.
On Solaris 2.6, it also contains /dev/zero which is used by all the applications for
mapping an unbacked segment. The libraries that are included are 1ibc, 1ibdl,

libelf, libm, libmp, libsec, etc. For a detailed listing, please see Appendix B.

COMMON _WRITE: This is the default set of files that can be written by any
application. This set includes /dev/null and all the files in the home directory of
the application.

X_READ_SET: Applications that are allowed to connect to the X server need
access to X libraries which contains X library calls and information such as fonts,
shapes, etc. For Solaris 2.6, X READ SET is set to /usr/openwin/lib.

NETWORK_READ _SET: When an application communicates over the network,
it needs to access files like /etc/netconfig and /etc/nsswitch.conf and libraries

like 1ibsocket, libnsl which are included in this set.

4.2 Behavior Classes

In this section we describe different behavior classes with examples of each class.
This description is meant to give a broad idea of behaviors included in each class.

The configurations for all behavior classes can be found in the appendix A.

4.2.1 filter

This is the simplest type of behavior class in terms of access control requirements.

It takes its input from the standard input, processes it and prints the output to the

29

standard output. Applications belonging to this class cannot access the network or
the display. They also cannot ezec any processes.

Example applications are unix filters sed, which is a stream editor, grep which
is used to search a file for a pattern, sort which sorts text files and comm which finds

lines common to two files.

4.2.2 transformer (input, output)

The transformer class is very similar to the filter class, the only difference being
that the applications in this class take their input from a disk file, specified as the
first argument and write the output to a file, specified as the second argument. As
with filter, the applications cannot access the network or the display and cannot
exec any processes.

Example applications are utilities such as compress, gzip, etc. Other impor-
tant applications which belong to this class are format converters. For example,
audio or video data can be converted from one form to the other. (jpeg to .bmp,

for example).

4.2.3 compiler (directory / list of files, libpath, output)

This class is similar to the transformer class in a sense that it takes the input spec-
ified by the first argument and generates an output file. There are, however, two
differences. The first difference is that the input consists of multiple files or a direc-
tory containing these files. Second, files that are not mentioned on the command
line can be accessed and used to generate the output - for example, 1libc.a for
the compiler. As with the transformer class, the applications cannot access the
network and the display. Compiler applications may access libraries which must be
present in the directories contained in the libpath.

Example applications are cc, gcc, £77. Other examples of this class are latex,
tar and dvips. Latex is a formatting and typesetting tool. It takes single or multi-
ple tex files as input and generates a .dvi file as its output.The tar command takes
a directory as an argument and creates an archive of all the files in that directory.

Some compilers like the Solaris C compiler open a socket connection to exchange
some licensing information. We do not consider this to be a part of compiler class

and disallow all network connections.

30

4.2.4 editor (dir/list of files)

Applications belonging to this class can edit files from a list of files or a directory.
Editors have read and write access to these files. They can’t access the network.
They have access to the display.

This class covers both text and graphic editors. Both types of editors require
helper applications. For example, text editors require spell checkers ispell, type-
setters and formatters such as troff and other utilities like tee, expr and deroff,
sort. Graphic editors need access to graphics-specific libraries and fonts. For Solaris
2.6, these libraries are contained in the directory /usr/openwin/1lib. The symbolic
constant which defines the path for the libraries is X COMMON _READ.

Examples of the text editors are vi, pico and emacs and graphic editors are

xfig, idraw.

4.2.5 wviewer (directory / list of files)

This class is similar to the editor class, except that it can only read files that it has
access to but cannot modify them. The files that can be read by the applications are
given by the argument, which can either be a directory or a list of files. Viewers are
not allowed to access the network. Access to the display is allowed. The applications
are not allowed to ezec a process.

The examples include xv, ghostview and pageview. Though these viewers can
actually write files into directory and have file browsers associated with them, we

do not consider this as a part of safe viewer behavior.

4.2.6 download (host, dir, port)

Applications belonging to this class can get information by connecting to the host
specified in the argument. The information downloaded is put in the directory
specified by the second argument. The applications are given write permissions to
this directory. The applications are not allowed to exec any processes, nor can they
access the display. Example applications are finger client and ftp client.
Depending upon the port number, different download applications can be dif-
ferentiated. For example, finger client connects to port 79 whereas the ftp client
connects to port 21. Actually, ftp can also upload files, but we allow only ftp get

behavior as a part of the download class.

31

4.2.7 upload (host, dir, port)

Applications belonging to this class can upload information by connecting to the
host specified in the argument. The information uploaded is present in the directory
provided by the second argument. Read-only access is given to the directory. The
applications are not allowed to ezec their own processes, nor can they access the
display.

Again, depending upon the port number, applications of this type can be dif-
ferentiated from one another. One example is an ftp client which uploads files
using the put command. It connects to the port 21. An example is a turnin client,

which uploads files by connecting to a specific port.

4.2.8 mail client (mailbox)

Examples of this applications class are pine, elmand mailtool. These applications
fetch mail from the mailbox. They need to have read, write permissions for the
mailbox (which is a file). Mail clients are also capable of sending emails using either
sendmail or by connecting to the mailer daemon. This is the only connection allowed.
Access to the display is allowed. Mail clients are allowed to spawn processes. The
spawned processes can only be of the type viewer - this allows mailers to display
most but not all MIME types (application/tcl and application/csh, for example,
cannot be handled).

4.2.9 browser (list of hosts, port)

Applications belonging to the browser class can connect to any of the hosts specified
in the argument. They can download information and store it into their home
directory. They can connect to the X server. They are allowed to spawn any process
which is of the class Viewer. The applications can connect to the port specified as
a parameter.

Example applications are netscape, lynx and hotjava. Most of these applica-
tions spawn viewer applications such as xv, ghostview. Applications of this class
are allowed to spawn children of class viewer. Netscape and lynx open files such
as /etc/utmp which has user and accounting information, /etc/passwd which is
a password database, and /etc/mnttab which has mount table information. We

rename those files with dummy files.

32

4.2.10 information provider(list of hosts, dir, port)

Applications in this class are allowed to accept network connections from the hosts
specified in the list. Information is contained in the directory specified by the second
argument dir. The applications have read-only access to the information. They do
not have access to the display. They cannot exec any processes. The application is
allowed to bind to and listen on just the port specified as a parameter.

A typical example of this class is the turnin server which accepts a set of files
from different users. Other examples include ftpd, fingerd, game servers and

teleconferencing server which coordinate between different clients.

4.2.11 server(list of hosts, dir)

This class is similar to the previous class except that applications belonging to this
class can exec processes. These processes must be of the type transformer which is
discussed earlier. Applications have read-only access to the information contained
in the directory. They do not have access to the display.

Example applications of this class includes web-servers. They can spawn cgi-
scripts which access the local information and generate the output. Other examples

include web proxies.

4.2.12 shell (mapfile, list of behaviors)

Applications of the type shell can execute binaries. The binaries which are allowed to
be executed and their corresponding behavior(s) are given in the mapfile specified
as the argument. Complete pathnames must be specified for the binaries. The
behaviors that are allowed to be executed are listed in the list of behaviors. The

examples of this type are tcsh, csh and ksh.

4.2.13 game

Game is a special type of application. It typically has access to the audio device and
the display. We consider only single user games, so disallow games from accessing
the network. Games are also not allowed to erec any processes. Examples are

pacman, doom-II, etc.

33

4.2.14 applet

This is the class that has access controls similar to that provided for the applets in
Java 1.0. The applications of this type, are allowed to access display, are allowed
to connect only to the host where they come from. All other network accesses are
denied. Access to local files are denied. The applications are not allowed to ezec

any process.

4.3 Relationships between classes

Now let us understand how these classes are related to each other. We start with the
filter class, since it needs the least resources. Applications of this class take input
from the stdin and send output to stdout. The applications cannot access local
files or the network. The transformer class is a superset of the filter class, since it
takes its input from a file and generates its output to a file. This means, if we allow
applications of the transformer class to run, we also allow applications of filter class
to run. Similarly, compiler class is a superset of the transformer class, since it can
access multiple files and libraries. Notice that all the three classes discussed do not
access the network, the display and except for the compiler applications, others can
not exec any process.

Applications which belong to the viewer class can display a set of files. They
cannot modify those files, nor can they exec any process. What differentiates them
from the three classes discussed above is that they have access to the display. The
class editor is a superset of the class viewer, since it can modify the files. Applica-
tions of this type can also exec editor-related executables.

All the classes discussed above do not access the network. The applications
which access the network can be divided into two categories: network clients and
network servers. Browser, upload and download are the classes which are network
clients. Upload and download can connect only to a specific host and send or receive
the information. Browsers on the other hand, can connect to multiple hosts and can
also spawn helper applications. Network server classes are information provider
and server. The difference is that the server can spawn processes and information

provider cannot.

34

Compiler Editor

Server Browser
/ \ | | /
Info-prov. Transformer Viewer
Game Applet

Upload
\

Filter - Download

Figure 4.1: Relationship between Classes.

35

Chapter 5

Implementation

We have implemented a confinement system called mapbox which confines native
binaries. In this chapter, we describe how our system works. We start by dis-
cussing the mechanisms used to intercept system calls. We then explain how we
handle intercepted system calls. In the next section, we explain the operation of
our system describing flow of control for a single system call. Next we describe how
mapbox handles non-routine system calls such as door, fcntl and ioctl. Finally,

we describe how mapbox can be used to confine untrusted applications.

5.1 Interception mechanism

The crux of the implementation lies in intercepting system calls and allowing or
denying them based on their arguments and the security policy applicable to the
class. To intercept system calls before they are executed, we can do static library
interposing, binary editing or we can use the /proc interface provided by several

operating systems.

Library interposing: We can intercept system calls by interposing a library that
implements the generic system calls API. It can check the operations and then
use the actual syscall interface to invoke the system calls. The advantage of
this technique is performance. It has a low overhead for intercepting calls. Its
disadvantages are: (1) applications cannot always be re-linked and (2) applications
can bypass the library using the same syscall interface used by the library. For

example, an application, instead of calling open can call syscall with SYS_OPEN as

36

argument, which essentially has the same effect.

Binary editing: Binary editing can be used to insert checks before the relevant
system calls. For example, for every connect system call in the binary, we can
insert a call to a function which checks the IP address. The advantage of such a
mechanism is its low overhead. The disadvantage is that we cannot have a dynamic

library loaded at runtime. Everything must be linked statically.

The /proc interface: In our implementation, we use the interception mechanism
provided by the /proc interface which has a higher overhead compared to the other
two mechanisms but is more general as it allows dynamically linked libraries and
cannot be bypassed. /proc is a file system that provides access to the state of each
process in the system. Files in /proc are named after the process-ids (pids) of each
process running on that system. Standard system calls like open, read, write,
close can be used to access /proc files. /proc also contains the image of all running
processes in the system and can be used to read or write data into address space
of the individual process. Information and control operations can be performed
through ioctls. To give an idea of how this interface is used in intercepting system
calls, we will go through the relevant part of the implementation.

An untrusted application runs with a process-id, say PID. To get access to its
image mapbox opens a file /proc/PID using open system call. Then it initializes two
sets of flags. One is sysentryset, a set of system calls that it intercepts on their
entry to the kernel. The other is sysexitset, a set of system calls that it intercepts
on their exit from the kernel. Not all information needed by mapbox is available
on the entry to the kernel. For example, a call like accept is blocking and the IP

address of the client is available only when the call exits.

ioctl(tracedfd, PIOCSENTRY, &sysentryset);
ioctl(tracedfd, PIOCSEXIT, &sysexitset);

As shown above, after the sets are initialized, control instructions (ioctls) are
given to the process file (with id tracedfd), asking it to stop on encountering those
system calls listed in the entry and the exit set.

Whenever the operating system stops the untrusted application, say because
it encountered some call listed in one of the sets, it passes the information about
the stopped process (untrusted application) in a structure called prstatus. This

structure contains information about why the application was intercepted (entry or

37

exit in our case), what system call was intercepted, its arguments, and the return
value if the call was trapped on exit. It also contains other information like signals,
process-ids, group-ids, stack size etc. which is not used by mapbox. Once mapbox
has the information about the system call intercepted and its arguments it can take
the appropriate action, ie. either allow or deny the system call. If the system call
is to be denied, mapbox sets a flag in the structure prstatus asking the kernel to
abort the call.

5.2 Handlers

Every call trapped has a handler associated with it. When the operating system
passes the information related to an intercepted call to mapbox, mapbox invokes
the appropriate handler. Handlers make use of the policy structure to decide if the
call is safe.

Policy structure, which is a part of mapbox, is a collection of data structures
that contain the information specified in the configuration. It consists of a set of

lists:
1. read-list : files/directories readable by the application.
2. write-list : files/directories writable by the application.
3. execute-list: binaries executable by the application.
4. connect-list: IP addresses to which the application can connect.
5. accept-list : [P addresses of authorized clients.
6. rename-list : files/directories that must be renamed.

These lists are initialized by mapbox using the configuration file. For example,
the following command will add /tmp/* /usr/home/docs to the read-list.

path allow read /tmp/* /usr/home/docs

Now, if /tmp/foo is being opened for reading, the open handler will scan the list
to check for the file. If the entry for that file or appropriate directory is found in
the list, then the corresponding action (allow or deny) is returned.

mapbox starts by reading the configuration file whose location can be specified

on the command line. For each command specified in the configuration, appropriate

38

initialization routines are invoked. After the initialization, mapbox is ready to run
the application that is to be traced. A child process is created and child’s state is
cleaned up. This includes setting umask to 077, setting limits on virtual memory
use, disabling core dumps, changing to the application HOME directory and closing
unnecessary file descriptors. The mapbox then starts executing the application.

5.3 Flow of control

To illustrate the operation of mapbox, we trace the flow of control for a single system

call.

dispatcher D—D‘DE*\T
read—list

olic
hm'\p i allow

untrusted open
process handler
\ mapbox
allow open allow

/tmp

operating system

Figure 5.1: Flow control.

Suppose an application makes an open call. First, the call enters the kernel.
Now since a handler for that call is registered, all the information related to the call
is bundled into the structure prstatus and is passed to mapbox by the operating
system. The mapbox then invokes the open handler. The open handler, depending
upon the arguments (name of the file and access mode) and the entries in the
appropriate list (read, write or execute), decides to allow or deny the call. If the
call is to be denied, then mapbox sets the abort flag and resumes the interrupted
application.

There are two extra context switches involved in this process. One switch hap-
pens when the operating system passes the control to mapbox passing all the in-
formation about the call. And the other switch happens when mapbox passes the

control back to the operating system. If binary editing or library interposition is

39

used as the interposition mechanism, these extra context switches can be eliminated.

5.4 Intercepted system calls

The set of system calls which are intercepted is decided by the commands used
in a particular configuration. Each command (path, rename, connect, accept and

childbox) is mapped into a set of handlers.

5.4.1 path

This command controls access to the file system. It maps into a set of handlers
which handle the file related system calls. In this section we discuss such calls and

also the criteria for allowing or denying them.

open: This system call opens a file for the access specified by the mode in the
argument. The mode can be read-only, write-only, read-write, append or create.
This call succeeds iff there exists a path command that permits access (with the

appropriate mode) to the desired file.

creat: This system call creates a file in the specified directory. This call succeeds
iff there exists a path command that allows reading and writing in the directory in

question.

symlink: symlink call has two arguments, namel and name2. It creates a symbolic
link name2 to the file namel. If this call is to succeed, then there must be path
module(s) giving write access to file name2 and read, write and execute access to

file namel.

erec, erecve: Each of these calls executes a binary file. Both read and execute
permissions to the file must be given by a path command in order for this call to

succeed.

pathconf, stat, Istat: The pathconf call returns the current value of a configurable
limit or option associated with a file or directory. The stat and 1stat calls get the
status of a file provided as an argument. To get these values, the file must be made

readable by a path command.

access: This call checks the file for accessibility according to the bit pattern con-

tained in the second argument. The access permissions to be checked are R_OK,

40

W_OK and X_OK (read, write and execute respectively) or the existence test F_OK.
To check for read, write or execute permissions, the corresponding permissions must

be given by a path command.

link, rename, unlink, rmdir, utime, utimes, chmod, chown, mknod: The link call
creates a new link for an existing file and unlink deletes this link; rename renames
the file by a name specified by the second argument; utime and utimes set the
access modification times for the file; chmod changes the access modes and chown
changes the owner of a file; rmdir deletes the directory entry for the file and mknod
makes a special directory entry. All these system calls need write permissions to the
file.

One important thing to note is that the path or the filename provided as an
argument to these calls can be a symbolic link. This can be a security hole. For
example, a file /tmp/poem can be a symlink to the file /etc/passwd. Thus all read
requests on /tmp/poem will access the password file. To prevent such a thing, we
use the resolvepath procedure to determine the actual file which will be accessed.
The call is allowed to proceed only if the appropriate permissions are given for the

actual file.

5.4.2 connect, accept

These commands control access to the network. They map into a set of handlers

which handle the network-related system calls. In this section we discuss such calls.

socket, socketpair: The socket call creates a socket for communication. Basically,
if accept and connect do not occur in configuration file, then the application is
not allowed to communicate over the network. In such a case socket call will be
denied. The socketpair call creates an unbound pair of connected sockets. It is

handled in a similar manner.

connect: This call requests that a connection be made on a socket. The destination
address is specified as an argument. This address must be specified by a connect
command. Protocol listed in the command must be tcp. The port specified in the
argument and that specified in the connect command must match. Otherwise the
call will be denied.

bind: This call assigns a name to an unnamed socket. This is used by server appli-

cations. The address is checked for based on accept commands. If a match for an

41

address, port and protocol is found, the call is allowed to continue.

sendto recufrom: These calls occur in both client and server-side code. The sendto
call sends a udp packet to the IP address specified in the argument. The recvfrom
call receives a udp packet from the specified IP address. The connection must be

explicitly allowed by either connect or accept for this call to succeed.

accept: This call is made only by server side applications. It accepts a new connec-
tion from a client and creates a socket to communicate with the client. The accept
system call is intercepted on its exit from the kernel and the address of the client is
checked for in a list of hosts specified in the accept command.

Only if the address specified in the argument is present in the list and if the port

numbers match, accept is allowed.

5.4.3 putenv, childbox

A new copy of mapbox is created for every child of an untrusted process. This requires
system call fork to be intercepted on its exit from the kernel. The return value of
the fork is the process-id of the child. A new copy of mapbox starts monitoring the
child. The behavior class for the child might be different from that for the parent.
This class is specified by the childbox command. If the two classes are different,
the exec handlers, must reinitialize the policy structures for the child.

The putenv command does not require any handlers. The environment variable
specified in the command is set for the untrusted process before it is created. For

example, the following command will set the PATH variable.

putenv PATH=/usr/bin:usr/local/bin

5.5 Special cases

There are some cases which are handled differently. They are (1) connection to the
display (2) ioctl calls (3) door calls and (4) the rename command.

X clients use the DISPLAY environment variable to make connection to the X
server. DISPLAY holds information about the IP address or unix domain socket
where the X server listens. We have designed and implemented an X filter, which
listens on a specific port. To make untrusted clients connect to the X filter and

not to the actual X server itself, we set the DISPLAY environment variable for

42

the untrusted process. The X filter monitors the messages between clients and the
server. The design of X filter is discussed in the next section.

The other special case is the ioctl handler. These calls perform a variety of
control functions on devices and streams. The arguments of these calls are file
descriptors of the open devices and commands associated with a particular device.
To handle ioctls, we would be required to keep track of all open devices and
streams and to associate the commands with the right device. We would also need
a priori information as to which commands for each device are safe and which are
not. In our implementation, we choose to be conservative and allow ioctls related
only to stdin and stdout which are known to be safe.

As discussed in chapter 2, the door family system calls get information from the
host, group and password databases. This is the new IPC mechanism introduced
by Sun Microsystems and is still in its experimental stages. Currently, we allow
applications only to interact with the host database.

Implementing rename command requires mapbox to write a string into the pro-
cess’s memory. This string is the name of the file which substitutes the actual file.
Using ioctls on the /proc file for the process, we write the string on the process’s
stack. The address of the stack is provided in the information passed by the oper-
ating system to mapbox as a field in the prstatus structure. Changing the filename
also requires changing the pointer to point to the new string. This can be done with

the help of ioctls which get and set the register which holds the pointer.

5.6 X protocol filter

The X server is designed to facilitate the cooperation between X clients. This is
done for two reasons: (1) to make clients independent of the window configuration
and (2) to allow different clients to communicate with each other (eg: for cut-and-
paste). This design has security implications when untrusted X clients are allowed

to run with other X clients.

5.6.1 Resources

There are six different types of resources that X supports. These are window,
pixmap, cursor, font, graphic context and colormap. An X client, during its
lifetime, creates resources, alters them or destroys them. Every resource is identified

with an ID. To reduce the network traffic between X clients and X server, the

43

resource related messages that travel from the clients to the server are indexed using
the resource ID. Server has all the information about different resources created by
the clients.

There are four different types of messages that travel between the clients and
the server: (1) Protocol requests are generated by clients and sent to the server; (2)
protocol replies are sent from the server to a client in response to certain requests;
(3) events are sent from the server to clients and contain information about a device
action or about a side effect of the previous request and (4) errors which tell the

client that a request was invalid.

5.6.2 Potential problems

Each resource has a set of requests associated with it. For example, for windows, we
have the following requests: CreateWindow, ChangeWindowAttributes, GetWin-
dowAttributes, DestroyWindow, ReparentWindow and Mapwindow. If an X client
knows the ID of a window created by some other client, it can issue the aforemen-
tioned requests on that window. Thus, it can manipulate that window even if some
other client created it. Clearly, this is not desirable for untrusted applications. An-
other outcome of this mechanism is that untrusted X clients can listen to events for
other X clients. They only need to know the ID of the target windows to listen to
their events.

Another possible attack would use requests like GrabServer, ChangeKeyboardMap-
ping, SetScreensaver, SetFontpath, etc. These requests are global in that they mod-
ify properties global to X server or make exclusive use of the server.

X clients communicate with each other using the protocol request, SendEvent.
Selections are passed using this request. Selections can be faked, such that malicious

X clients can make other clients pass certain information.

5.6.3 X filter

X filter is an interposing agent between an X client and the X server. It listens to
all communication between an untrusted X client and the X server. It filters out all
unsafe requests. Events and errors pass unfiltered. To secure the system, from the

attacks discussed in the last section, X-filter applies the following policies:

e A client is allowed to access only resources that it has created. For example,

if a client has created a window with id 344, then only that client can access

44

the window.
e All requests that have global impact are disallowed.
e Selections are disallowed.

Appendix C at the end gives information about how each protocol message is han-
dled.

5.7 Usage

After studying functions of the different components of mapbox, let us understand
how we can actually use it to confine binaries. The simplest case is to invoke it

directly from the command line. The usage is:
mapbox [-i] [-b symconstfile] [-f configfile] application

The -i option makes the application interactive. We can specify the path for the
configuration file using the -f option. We can also specify the file with the site
specific constants using the -b option. For example, we can run the editor vi using

the following command:
mapbox -i -f $LIBDIR/editor.conf vi /tmp/foo

Here, LIBDIR is the environment variable which points to the directory where con-
figuration files are stored. This application vi opens a file foo (if allowed); all the
calls made by vi will be monitored by mapbox using the configuration editor.conf.

Since we already have a list of different classes and configurations associated
with them, it would be nicer not to have to specify the configuration file everytime
we invoke mapbox. In order to achieve this, we maintain an behavior class to
configuration file mapping in the file .mapcap. Now the command mentioned above

can be specified as:
box editor vi /tmp/foo

boz is the executable which invokes the mapbox. Before it does that, it opens .mapcap
and searches the entry for class editor, which is specified as the second argument.
The entry looks like:

editor mapbox -i -f $LIBDIR/editor.conf HOME=/tmp DIR=/home %s

45

The first field is the name of the class (editor in this case). What follows is the
command which is to be executed for an application belonging to that class. As
discussed earlier, many of the configurations have parameters which are specified in
.mapcap file. In this example, there are two parameters that are specified in the
command. They are HOME (HOME directory of the application) and DIR (list of
directories editor applications are allowed to edit). The boz must translate these
parameters into appropriate commands. For example, the parameter HOME=/tmp

must be translated as:
set HOME=/tmp
The command the box executes then is:

mapbox -i -f $LIBDIR/editor.conf vi /tmp/foo

46

Chapter 6

Performance Evaluation

In this chapter, we present evaluation of the overhead of confinement using mapbox
We first describe the experimental setup. Next, we explain various components
in our system. We present two different sets of measurements: micro and macro
benchmarks. Using micro-benchmarks, we compute the overhead for individual
components of our system. Using macro-benchmarks, we measure the overhead for

complete applications. We conclude with a discussion of the results.

6.1 Experimental Setup

We ran our experiments on a SUN, Ultra-1, 167MHZ machine running Solaris 2.6
with 64MB of memory. The measurements were taken on a lightly loaded machine.
We tried to reduce load on the machine. For micro-benchmarks, we measured the
overhead for individual system calls using a test program which makes the call a
large number of times and computed the average time for the call. In addition we
added timing code to mapbox to measure the time spent inside mapbox. For macro-
benchmarks, we ran an application and measured its end-to-end latency. We wrote
a generic wrapper which takes the application name on the command line, runs it
and computed the latency. The time measurements were taken using the Solaris

high resolution time function gethrtime.

6.2 Timing the components

Figure 6.1 shows the different events that occur in the system when a process makes

a system call. Without mapbox, the call enters the kernel and the kernel executes

47

untrusted - —
process / I /
read / write \
[args \ args
tr t
\ | N // N lv /
normal | | -
execution |
path \ | mapbox
\
| | ISW context tsw
‘ | switch

T o fos
— ———operating system

Figure 6.1: Timing Diagram.

the call before passing control back to the process. With mapbox, the control takes
a different path. The kernel passes control to mapbox, if a callback for that call
is registered. The mapbox passes the control back to the kernel asking it to either
allow or deny the call. If the call is allowed, kernel executes it and passes the control
back to the process. If the call is denied kernel passes control back to the process
with appropriate error code. The time taken by the following events collectively

constitutes the overhead.

e The operating system searches for a callback registered for the call and bundles
the system call related information in the structure prstatus. This is the
minimum cost that must be paid if we use the /proc interface for interception.
This time is labeled tos.

e The operating system passes control to mapbox and vice versa. These are the

extra context switches introduced by using mapbox. This time is tsw.

e Mapbox invokes a handler. The cost equals the cost of a function call within
mapbox. For some system calls like open, we need handlers, whereas for some
other calls like mount we do not need handlers and these calls do not incur

this cost.

e A handler either reads or modifies arguments of the call. Handlers for calls like
open read the arguments while for handling rename, we write into process’s

memory. These times are denoted by tr, tw respectively.

48

6.3 Micro-benchmarks

We selected getpid and open as the system calls to test our benchmarks. The call
getpid is cheap as it does not have any arguments, whereas the call open has a
string argument which needs to be read from the process’s memory and is more
expensive. The call getpid returns the ID of the process calling it. The call open
opens a file with the path specified by the first argument and using the file access
modes specified by the second. Each call was invoked a thousand times and the
average time was calculated. This time without mapbox is denoted by tn. We then
executed the program with mapbox and determined the values: (1) average time per
call spent in mapbox and (2) average time per call as seen by the application. From
these numbers we computed the time spent in the individual components mentioned

in the previous section.

Workload: getpid

We used the following benchmarks for the getpid call. Table 1 gives the performance

numbers.

e No callbacks were registered; null entry and exit sets were specified. Once these
sets were registered with the operating system the callback search mechanism
is turned on, even though the sets are empty. Since we repeatedly invoke
getpid system calls, it tells us the overhead incurred by the operating system
in checking for a callback. There are no extra context switches involved and
zero time is spent inside mapbox. Let the time for this case be denoted by tem.

Therefore, we have the following equation:

[tos = tem - tn] (6.1)

tos is the extra time spent by the operating system for the callbacks search.

e An intermediate variable th was calculated as follows. We intercepted getpid
on its entry to kernel and the mapbox was set up to execute no handlers for
getpid. We then used th to calculate the extra time spent by the operating sys-
tem in packing all the information related to this call in the structure prstatus.

We obtained the context switch time tsw using the following equation.

[tsw = (th - tn - tos)/2] (6.2)

49

case avg time avg time | mapbox time(%) | o/s time
w/o mapbox | with mapbox
no callback 2.97 4.8 0(0) 4.8
entry, no handler 2.97 109.7 7.7(7) 102
exit, no handler 2.97 110.5 8.2(7) 102.3
exit, empty handler 2.97 114.6 8.8(8) 105.9
exit, read return value 2.97 128.7 9.3(7) 119.4
exit, modify return value 2.97 173.5 61.3(35) 112.1

Table 6.1: Results in us for different cases of getpid

e We trapped getpid call on its exit from kernel. We used this benchmark to
determine the difference of overhead between intercepting call at the entry and

exit from kernel.

e We intercepted getpid on its exit and read the return value. We denoted the

time taken to read the return value inside mapbox as tr.

e We intercepted getpid on its exit and modified the return value. This required
us to modify a register from the set of registers for the process. We used two
ioctls to do this, one which read the register set and the other which set the

register set. We defined the time taken for this modification operation as tw.

From this we concluded that for a handler that reads the argument the end-to-
end latency tot is given by:

[tot = tn + tos + 2*tsw + tr]| (6.3)

Based on the numbers in table 6.1, we can conclude that most of the cost of
confinement for simple calls that do not read or write arguments can be attributed

to the operating system.

Workload: open

For open system call, we used three different workloads. All the files were in an
NFS filesystem.

¢ We invoked open with and without a handler. We also measured the overhead

for rename command. For rename, a string must be written into the process

50

] total time with | time spent In
case total time mapbox mapbox(%)

entry, no handler 219.40 367.78(1.68) 9.919(1.05)
entry, empty handler 219.40 374.94(1.71) 12.013(1.05)
entry, read arguments 219.40 516.84(2.36) 151.47(1.69)
entry, remap file 219.40 680.08(3.1) | 280.95(2.28)
gzip, 1Mb files(ms) 3823.72 | 3855.48(1.01) 64.68(1.02)
gzip, 32K files(ms) 1656.06 | 1665.55(1.01) 72.10(1.04)

Table 6.2: Results in us for different cases of open. The numbers in parentheses
are ratio of total time with and without mapbox (column 3) and overhead added by

mapbox (column 4).

stack. This was done using a pwrite call. The pointer was changed using

ioctls. The results are presented in table 6.2.

e The handler associated with open is more complex than the handler for getpid.
It scans list(s) according to the access mode. (read-list, write-list and execute-
list) To observe the effect of the length of this list on the cost of open, we
varied the number of nodes in the list from 1 to 32 in multiples of 2. The

results are presented in table 6.3.

e Finally, we measured the effect of intercepting open calls in presence of sig-
nificant computations between them. For this experiment, we ran gzip for
two datasets, 4 1MB files and 32 8KB files. Results are presented in table 6.2.

Each reading is the average of a thousand consecutive runs.

From the results in table 6.2, we can say that the overhead introduced by open
handler is quite high. To determine the breakdown of the overhead, we timed differ-
ent components of the handler. We observe that the resolvepath system call, which
resolves symbolic links, takes around 250 us (65% of the time) and reading argument
(filename string) from process’s memory takes 150 us (35% of the time). These two
factors together account for 90% of the time spent inside mapbox. Therefore, in

table 6.3, we see little variation in values as we vary the number of handlers.

51

nodes is read total time with | time spent in
. total time .

list mapbox mapbox (%)

1 219.40 766.66(3.49) 405.96(2.85)
2 219.40 769.26(3.51) 408.05(2.86)
4 219.40 779.50(3.55) 416.58(2.90)
8 219.40 806.20(3.67) 437.83(3.00)
16 219.40 832.42(3.79) 468.96(3.14)
32 219.40 879.88(4.01) 519.75(3.37)

Table 6.3: Results in ys for varying number of handlers. The numbers in parenthesis
are ratio of total time with and without mapbox (column 3) and overhead addded

by mapbox (column 4).

6.4 Macro-benchmarks

For macro-benchmarks, we ran complete applications using mapbox and measured
the slowdown in their end-end execution time. We also gathered information about
the total number of calls made by the applications and number of calls intercepted

by mapbox.

Non-interactive applications

The applications and their workloads are listed in table 6.4. These applications were
confined in the appropriate confinement environment. We used a wrapper program
to accurately time the end-end execution time. We took 10 sets of measurements
and eliminated the outliers. The intuition is that other programs running in the
system can cause fluctuations in the values. We measured the end-to-end time and
the time spent inside mapbox. We see for some applications (gcc), the overhead is
high. This is due to a large percentage of the calls intercepted are open, stat and
access calls, which require complex handling including resolvepath and reading

the process’ memory.

Interactive applications

It is difficult to measure the performance of interactive applications accurately. The

main reason being the variability in human input. As a lower bound we measure

52

application workload
gce Compile 10 C files, about 5000 lines of code.
latex Compile 5 tex files, each about 300 lines.
dvips Convert .dvi to .ps, about 50 pages.
ftp ftp 10 files of 32KB each.
gzip gzip 4 1MB files and 32 8KB files.
fgrep fgrep gee source directory for int.(182 files).
Table 6.4: Workload for non-interactive applications
. total total time with | time spent in | ratio of calls in-
application
time mapbox (%) mapbox (%) tercepted
gee (sec) 14.5 20.49(1.41) 4.412(1.28) 5489/13557
latex 2798.4 3058.3(1.09) 372.34(1.13) 2440/9050
dvips 2881.7 3264(1.13) 113.4(1.04) 5704/19669
ftp 1989.6 2325(1.17) 372.3(1.19) 375/1391
gzip 1IMB 4260.1 4300.5(1.01) 92.168(1.02) 124/440
gzip 8KB 1518.6 2018(1.33) 228.83(1.15) 264/713
fgrep 2722.3 2755.7(1.01) 252.28(1.09) 1382/32204

Table 6.5: Results in millisecs for non-interactive applications.

The numbers in

parentheses are ratio of total time with and without mapbox and overhead added by

mapbox Last column gives the ratio of number of calls intercepted vs. total number

of calls made.

53

L time spent 1n
application total time
mapbox
vi 86.25ms 138s
lynx 28.88ms 25s
pine 278.20ms 46s

Table 6.6: Results in milliseconds for interactive applications

the time spent in mapbox We tested the following cases: (1) using vi to type 100
words to a file, save and exit, (2) using lynz to open a site, follow three pointers,
return to the main page and exit and (3) using pine to open the mailbox, read three
messages, delete them, send three messages and quit. The values are given in table
6. To these values, even if we add context switch time for every intercepted call, they
do not change by more than 1ms). We conclude that for interactive applications,

time spent in mapbox is negligible.

6.5 Conclusions

From the measurements, we conclude that, for individual calls, the extra time spent
by the operating system cost dominates the overhead. For the worst case, getpid
which takes 3us to execute, requires 100us to be spent in the context switches. The
percentage overhead for complex calls like open is less compared to that for getpid,
but is still substantial. These measurements suggest that it would be expensive to
intercept a large fraction of the calls made by applications. The results from the
macro-benchmarks, however, show that for most of the applications only a small
number of calls are intercepted (4% for fgrep to 40% for gcc). Accordingly, the
overhead introduced by using mapbox varies from 1% for fgrep to 41% for gcc.
Applications which incur relatively higher overhead make lot of file related calls
(open, stat, access, for example). Resolution of the paths using resolvepath
takes about 65% of the total time spent inside mapbox for these calls. Another 25%
of the time is spent in reading the pathname from the process’s memory. If library
re-linking or binary editing is used for interposition then the cost of context switches
the path can be eliminated completely (reduction in the overhead from 41% to 30%).
If mapbox is implemented inside the kernel, the cost of resolution can be reduced

considerably (from 41% to 10%). In this case the extra context switches and the
54

path resolution are avoided completely.

55

Chapter 7

Related Work

We divide the related work into four sections. The first section describes the inter-
posing agents which extend the operating system. The second section covers the
work done in confining applications. The third section describes the systems that

detect intrusions. The last section describes the security model for Java.

7.1 Interposing Agents

Interposing agents have been developed for various reasons. Extending the operat-
ing system for value-added functionality is one of them. mapbox, in a similar way,
can be viewed as functionality added to the operating system, so that the system
can run untrusted applications safely. In this section, we discuss Interposition
Agents and SLIC, which are mechanisms available for implanting user-level exten-
sions, SPIN which is an extensible operating system and Condor and Securelib
which use modified libraries for interposition.

Interposition agents [22], introduced by Mike Jones, is a toolkit that sub-
stantially increases the ease of interposing user code between clients and instances
of the system interface by allowing the code to be written in terms of higher-level
objects instead of the system calls themselves. This toolkit was developed on top of
the Mach 2.5 system call interception mechanism, which forwards the system calls
to extensions linked into the application’s address space. The abstractions provided
by the toolkit are pathnames, descriptors, processes, process groups, files, directo-
ries, symbolic links, pipes, sockets, signals, devices, users, groups, permissions and
time. A major drawback of using such a tool is that the extension resides in the

same address space as the application itself, and therefore is susceptible to memory

56

corruption. Interposition agents, therefore, cannot enforce security guarantees.

SLIC [26] is a system developed at Berkeley for efficiently inserting trusted ex-
tension code into the operating system kernel with minor or no modification to
the operating system source code. The goal of this project is to make it easier for
software vendors to develop and deploy innovative operating system features. It
provides security by protecting extensions and efficiency by running extensions in
the kernel’s address space. SLIC could be used to implement mapbox in the kernel.

SPIN [23] is a general purpose operating system that provides extensibility, safety
and good performance. It uses a type-safe language, Modula-3. The language
enforces the interface and address boundaries, thus ensuring that any extension
written in Modula-3, when loaded into operating system space, stays separated
from the kernel. This makes the system easily extensible and safe. Extensions like
mapbox, efficient paging algorithms and high performance network protocols can be
easily added to the operating system.

Condor [27], which is a high throughput computing system developed at Univer-
sity of Wisconsin, runs on a cluster of workstation and harnesses its computation
power by scheduling jobs on idle CPUs. It requires that the applications have two
abilities: check pointing for migration and remote system calls. To migrate the
calls made by applications, Condor system re-links the applications with its own
libraries. In a similar approach, securelib [11], which is a shared library, replaces
the C accept, recvfrom and recvmsg library calls by a version that performs
address-based authentication. Wrapper libraries could be used as an interposition
mechanism for mapbox, but it would require the untrusted applications to be re-
linked.

7.2 Confinement

There are many research groups which have addressed the confinement problem.
Janus, Deeds, Consh and PCC confine untrusted applications. DTE confines ac-
cesses of root programs. Software Fault Isolation is a technique for memory
protection in which untrusted process’s address space is logically separated from
the trusted process’s address space.

Janus [1], which is a system developed at Berkeley, provides a secure environ-
ment to untrusted helper applications spawned by browsers like Netscape. Helper

applications handle untrusted data and can be potential security threats. The lan-

57

guage for mapbox is derived from that of Janus. Constructs such as path, connect
and putenv are common between the two. Since it focuses on confining helper
applications it does not have accept, rename and childbox in its language. For
confining accesses to the display it uses Xnest which is not very stable. Janus
ignores symbolic links.

Deeds [2] is a system that implements history-based access control for mobile
codes. It maintains a selective history of accesses for an application and uses this
information to grant or deny further accesses. The application is classified at runtime
as opposed to classifying it at load time as in mapbox. For every application, there
are pre-installed policies which specify the resource constraints. For every access,
all relevant policies are inspected and access is denied if at least one policy denies
it. The disadvantage is that it is hard to compose policies.

Consh [28], which stands for ”confined shell”, is a system that monitors the
accesses to local resources and provides transparent accesses to remote resources.
It uses Janus for monitoring local accesses. It provides access to the ftp and http
file system. It migrates the network related system calls made by an untrusted
application to its original host.

Proof carrying code [25] is a technique in which a producer of an untrusted
code provides a proof that the code adheres to a predefined set of safety rules as
chosen by the code consumer. The consumer, who runs the code, can, verify the
proof at loadtime. The proof is checked statically, which eliminates the runtime
overhead. Although verifying a proof is relatively easy, generating the proof is very
difficult. The early experiments are focused exclusively on fine-grained memory
safety and not system resources which are the focus of mapbox.

Software Fault Isolation [24] places an untrusted module into its own fault
domain, a logically separate portion of application’s address space. The object code
for the untrusted module is modified to prevent it from writing or jumping to an
address outside its fault domain. This mechanism is portable and programming
language independent. It uses binary-rewriting technique which can be used in our
approach as well. The disadvantage is that it ignores system-level security.

Domain and Type Enforcements (DTE) [21] is a configurable operating system
access-control technology that can minimize the damage caused by subverted root
programs. Configuring an appropriate DTE access control policy causes many root
programs to be executed in restrictive domains that limit the accesses from each

program to those needed for its responsibilities. DTE is an attractive and broadly

58

applicable approach, but its main disadvantage is that it requires kernel modifica-

tions.

7.3 Intrusion Detection Systems

Intrusion Detection Systems [20] come in two basic varieties: anomaly detection and
misuse detection. Anomaly detection assumes that users and their processes have
consistent, recognizable behavior patterns with respect to things such as login time,
applications used and so on. Anything falling outside this behavior is termed as
intrusion. The main disadvantage of this approach is that it is subject to both false
positives (benign behavior termed as potential attack) and false negatives (malicious
behavior ignored). Misuse detection exploits vulnerabilities which are known to
exist. There are no false positives: if an alert is raised, then an attack has happened.
The disadvantage is that false negatives are inherent. Attacks which are not known
cannot be detected.

USTAT [4] is an intrusion-detection system developed at Santa Barbara. In this
system, penetrations are represented as state diagrams. The audit trails produced
by the system are matched to find out possible attacks. A sequence of events which
maps to an attack can be expressed using the language. The language is much more
powerful compared to mapbox as it can express events based on predicate logic. The

system is currently being modified to detect network-based attacks.

7.4 Java security

Java 1.0 classifies applications in two different categories. All applications loaded
from the CLASSPATH are trusted and have all access rights of the user running
them. All other applications are not trusted and do not have permissions to access
files, permission to access third-party hosts and permission to create processes. This
approach is very restrictive and prevents a lot of useful applications from executing.

Java 1.2 [6] takes a different approach. It classifies applications based on their
code-base or URL. This means that applications coming from two different domains
are treated differently. The policy specifications can be specified in a file which is
read by the access controller. The file contains the mapping of specific permissions
granted to the specific code sources. The basic entity that the access controller op-

erates on is a permission object. There are different types of permission objects as

59

there are resources. These permissions include FilePermission, SocketPermission,
PropertyPermission, RuntimePermission, NetPermission, SecurityPermission, Se-
rializablePermission, ReflectPermission, UnresolvedPermission and AllPermission.
These permissions are similar to the commands we define. Permissions to access
files in /tmp/*, for example, can be created using the following line of code:
FilePermission pl = new FilePermission(” /tmp/*”,”read, write”);

Now to grant this permission to a code loaded from www.zyz.com we have the
following entry in the file:
grant codeBase http://www.xyz.com/ {
permission java.io.FilePermission "/tmp/*", "read, write" };

Wallach et al. [3] have proposed three implementation strategies for interposing
flexible security policies in Java Virtual Machine. They are: Capabilities, Extended
Stack Introspection and Type Hiding. All three strategies assume the presence
of digital signatures to identify the principal. This principal is mapped to the
security policy. Implementation of type hiding requires changes to the classloader
and implementation of stack introspection requires complex changes to the virtual
machine. Capabilities are quite simple , but developing a capability-based Java

environment would require redesigning the interface for the Java class libraries.

60

Chapter 8

Discussion

8.1 Usage

We first discuss how some of the attacks, discussed earlier in the introduction, can
be prevented. The Internet worm exploited weaknesses in fingerd and sendmail
and used the fact that most of the encrypted password files were usually world-
readable. If mapbox is used to confine fingerd, then it will ensure that it can only
accept but can never connect. This will render the worm from spreading further.
In a similar manner, Back Orifice running under mapbox can be prevented from
accepting connections from other hosts, deleting files or monitoring user activities.

We see the system being used in two distinct ways. They are:

e For the programs that are run explicitly, for example, cgi-bins and network
services, configuration environments are specified by the users. For example,
in case of web servers, clients will upload their services or programs. In case
of active networks different clients will provide services which are to be run on
the intermediate network nodes. In both these cases the administrator of the
server or the network node will have the knowledge of the type of application
being installed, as specified by the service provider. The administrator will
then use this information to ensure that those applications run with proper
configuration environment. Other examples where the system can be used in
this manner are confining daemon programs (preventing buffer attacks) and

confining code that is ftp’ed over.

e For programs that are run implicitly, for example, executables sent as e-mail

attachments, installable plug-ins, downloaded code in global computing sys-

61

tems and macros in word documents and postscript documents, we anticipate
that the code will carry a tag indicating its type. The runtime system will
then map this tag to an appropriate configuration environment. The mecha-
nism is similar to the way Netscape and other MIME-aware applications use

the .mailcap file to demultiplex downloaded data to helper applications.

8.2 Running applications under mapbox

We monitored the applications we studied with mapbox using an appropriate configu-
ration environment for each of them. We did this to verify that existing applications
can be confined using the behaviors we have defined. We ran the applications using
mapbox. We also ran X-applications separately using xbox. For the experiments

involving mapbox, we made the following observations:

e Solaris finger client, telnet client and ftp client currently run under

mapbox.

e Currently 1lynx does not run as it tries to connect to the password database
using door call. Netscape does not run as it requires

information in /etc/passwd and /etc/mnttab.

e C compilers such as cc and gcc currently do not run as they make calls to find
out the working directory by making a series of stat and getdents calls up the
directory hierarchy, from the current directory up to the root. This sequence
of system calls is described in Figure 2.6 as the pwd pattern. Getting the value
of the working directory is central to the functioning of many applications.
We recommend that pwd be provided as one system call. This will allow the
applications to run in a safe manner. Other compiler applications such as

latex and dvips currently run under mapbox.
e Transformers such as gzip and gunzip currently run under mapbox.

e The editor emacs fails trying to find the working directory (pattern discussed
in cc and gcec example). Other editors such as vi and pico currently run

under mapbox.

e Shells sh and ksh currently run under mapbox; csh, however, does not run. It

scans all the directories in its PATH environment variable, a behavior which

62

is disallowed for a shell. As a part of our policy, we have allowed only those
accesses that are required as a part of core functionality. As the presence or
absence of files can be a piece of information which can be used to compromise

the security, we have disallowed scanning of directories in PATH.
e Viewer ghostview currently runs under mapbox.

e xterm currently fails trying to invoke pt_chmod which is a setuid root pro-
gram. We cannot trace setuid root programs using /proc interface and there-

fore disallow them.

e Mail clients pine and elm currently do not run under mapbox. Both applica-

tions try to access /dev/ticosord, access to which is denied.

For the experiments involving xbox, we made the following observations:

e Several applications such as xcalc, xclock, xterm and idraw currently run

under xbox.

e Several other X applications currently unable to run for various reasons. For
example, xv is interrupted when it invokes XQueryTree on the root window;
ical and ghostview fail trying to invoke XChangeProperty on the root win-
dow; xfig fails trying to allocate a colormap not owned by itself; pageview
trying to change an attribute of a window not owned by itself; Netscape fails
trying to get the selection owner
(X_GetSelectionOwner).

8.3 Assumptions
Mapbox makes the following assumptions:

e Path related information provided by NFS is consistent. While resolving the
path, however, NFS might have inconsistent information. This might acci-
dently give an application access to a file originally disallowed by its configu-

ration.

e [P addresses are not spoofed. An application could take advantage of the
services available to certain hosts by spoofing the IP address (ACM digital

library, for example).

63

The mapbox can effectively prevent trojan horse attacks by confining applica-
tions to their specified behaviors. However one has to be careful while designing
configurations. Two applications, if accidently given access to a common directory
(/tmp, for example) can still break into the system by sharing information. However,
accesses must be explicitly granted and applications must be aware of each other’s

existence.

64

Chapter 9

Conclusions

We make the following conclusions: First, behaviors of applications are identifiable.
We have identified fourteen different behaviors. They are: filters, transformers,
mail clients, compilers, viewers, editors, shells,

upload clients, download clients, browsers, info providers,

servers, games and applets. These behaviors form a hierarchy. For example,
compiler is a superset of transformer, which indeed is a superset of filter. The
set of behaviors is not exhaustive. However, it covers many of the applications
that we use today. These behaviors can be refined or the new behaviors can be
introduced, as needed.

Second, configuration environments defined for different behavior classes can be
used to confine untrusted binaries. Many of the existing applications used in the
study, run under mapbox when monitored using appropriate confinement environ-
ment. Many other applications do not run as they try to access resources disallowed
by their behavior classes.

Third, the mapbox is usable as well as configurable. FEnd-user need to specify
only the behaviors which she wishes to allow. For example, end-user might not want
to allow applications which make network connections, but might allow filters,
transformers and compilers. We expect that end-user will not have to deal with
configuring the configuration environment. If required, system administrators can
configure new behaviors or refine existing behaviors using the confinement language.
Configurations are also portable. All site-specific constants are defined in a single
file, which encapsulates all platform-dependencies.

Fourth, the study of applications has revealed that many applications, in par-

65

ticular proprietary applications designed to run on a single platform, access more
resources than their functionality demands. However, they may or may not make
use of these extra resources. For example, accesses from Solaris finger client to
/etc/passwd can be replaced by accesses to some dummy file. On the other hand,
the Sun cc compiler connects to a license server and will not run without it.

Fifth, the overhead introduced by mapbox depends upon the nature and fre-
quency of the system calls intercepted. For compute-intensive applications, the
overhead introduced by mapbox can be as low as 1%. For file-intensive applications
it can be as high as 41%. For file-intensive applications, this overhead can be roughly
distributed as: 65% for the path resolution; 25% for the context switches; remaining
10% for filename search. Performance can be improved, at the cost of generality, by
using alternative interposition techniques where the interposed code is in the same
address space as the process being monitored (eg: library re-linking and binary edit-
ing). This eliminates the cost of the extra context switches. Theoretically, in the
best case, overhead can be reduced from 41% to 30%. Further improvements can be
made at the cost of kernel modifications, if mapbox is directly implemented inside
the kernel. In that case the overhead can be as low as 10%, as this would eliminate
the cost of path resolution (65% of the handler time) in addition to eliminating the
cost of extra context switches per intercepted system call.

Sixth, the policy of confining applications to their own windows can effectively
confine untrusted X applications. Several application such as xcalc, xclock,
xterm and idraw can run under xbox. Many of the regular behaviors such as
keyboard input, output, pointer input, menus, colormaps are supported. Other

behaviors such as selection, grabbing the server are disallowed.

66

Appendix A

Handling system calls

In this appendix, we list all system calls for Solaris 2.6 and the corresponding action
that we take for each of them. The data is organized into three sections. Section
one has all the calls that are allowed (not intercepted). Section two lists all the calls
that are denied. Section three (Table) lists all the calls that are selectively allowed
or denied based on their arguments.

The following system calls are not intercepted: read, write, close, time, brk,
Iseek, getpid, getuid, alarm, pause, nice, sync, dup, pipe, times, profil, getgid, signal,
fdsync, ulimit, getdents, poll, signalhandlers, context, mincore, mmap, mprotect,
munmap, fpathconf, readv, writev, setrlimit, getrlimit, memcntl, uname, sysconfig,
sigtimedwait, lwp calls, gettimeofday, getitimer, setitimer, lwp calls, pread, pwrite,
llseek, processor_bind, processor_info,
sigqueue, clock_gettime, clock_getres, timer functions, lwp stuff, ntp_gettime, wait.

The following system calls are denied: chown, mount, umount, stime, ptrace,
stty, gtty, statfs, fstatfs, pgrpsys, xenix, plock, msgsys, syssun, sysi86, sysppc, acct,
shmsys, semsys, uadmin, utssys, umask, chroot, sysfs, setgroups, getgroups, fchown,
evsys, evtrapret, xstat, Ixstat, fxstat, xmknod, clocal, lchown, adjtime, system-
info, vtrace, modctl, fchroot, vhangup, inst_sync, kaio, tsolsys, auditsys, p_online,
clock_settime, setregid, install_utrap, signotify, schedctl, pset, signotifywait, rpcsys,

sockconfig, ntp_adjtime.

67

System call

Module(s)

ioctl connect’ accept
execve path rename
fentl fentl _hook
rmdir path rename
mkdir path rename
getmsg, putmsg connect accept
Istat path rename
symlink path rename
readlink path rename
fchmod path rename
pathconf pathconf_hook
vfork fork_hook
fchdir path, rename
getpmsg accept
putpmsg connect’
rename path, rename
utimes path, rename
acl acl_hook
facl acl_hook
door door_hook

64-bit calls

similar to their 32-bit counterparts.

socket calls

connect’ accept

getpeername connect’, accept
getsockname connect’, accept
getsockopt connect’, accept
setsockopt connect’, accept
syscall will not be seen by mapbox.

68

System call Module

open path, rename connect’ accept
creat path rename
link path, rename
unlink path rename
exec path rename
chdir path rename
mknod path rename
chmod path rename
stat path rename
fstat path rename
utime path rename
access path rename
kill kill_hook
ioctl ioctl_hook connect accept
fentl fentl_hook
fork, forkl fork_hook
setuid setuid_hook
seteuid seteuid_hook
setgid setgid_hook
setegid setegid hook
resolvepath resolvepath_hook

Table A.1: System calls and function/modules handling them

69

Appendix B

Configurations for Applications

This appendix contains the constants and configurations for the behavior classes
we have identified. The configurations are defined for Solaris 2.6. Figure 1 con-
tains the file which holds all the site specific constants. Subsequent figures are the

configurations for various classes.

70

define _COMMON_PATH /usr/bin:/usr/local/bin:/usr/openwin/bin:
/fs/net/solaris/bin:/opt/SUNWspro/bin: _APP_HOME:/usr/dt/bin:.

define _COMMON_LD_LIBRARY_PATH /usr/lib:/lib:/fs/solaris/lib:
/usr/openwin/lib: /usr/ucblib

define _COMMON_READ /dev/zero _APP_HOME /usr/lib/locale/*
/usr/1lib/libc.so.1 /usr/lib/libdl.so.1 /usr/lib/libintl.so.1
/usr/1lib/libelf.so.1 /usr/lib/libm.so.1 /usr/lib/liballoc.so.1
/usr/lib/1libmp.so.2 /usr/lib/libmp.so.1 /usr/lib/libsec.so.1
define _COMMON_WRITE /dev/zero _APP_HOME

define _COMMON_TERM xterm

define _COMMON_DISPLAY unix:4

define _BIN_UTILS /usr/bin/ispell /usr/bin/tee /usr/bin/troff

define _MISC_LIBS /usr/lib/libthread.so.l /usr/1ib/1ibICE.so0.6
/usr/1ib/1ibSM.so0.6 /usr/lib/libw.so.1 /usr/ucblib/*

define _COMMON_X_READ /usr/openwin/1lib/* /usr/openwin/share/*
/usr/openwin/bin/* /fs/net/solaris/lib/x*

define _NETWORK_READ /etc/netconfig /etc/nsswitch.conf

/etc/.name_service_door

define _NETWORK_LOAD /usr/lib/libsocket.so.l /usr/lib/libnsl.so

/usr/lib/nss_compat.so.1

define _COMMON_TTY /usr/share/lib/terminfo/x/xterm

Figure B.1: File defining constants for solaris 2.6

71

configuration file for application filter.

syntax: filter

can set the application home to save states after the exec.
if not specified... it will be /tmp by default.
set _APP_HOME /tmp

putenv PATH=_COMMON_PATH
putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

Figure B.2: Configuration for the filter class

configuration file for application shell.

syntax: shell (mapfile, list-file)

can set the application home to save states after the exec.
if not specified... it will be /tmp by default.
set _APP_HOME /tmp

putenv PATH=_COMMON_PATH
putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

path allow read $mapfile $listfile

Figure B.3: Configuration for the shell class

72

configuration file for application browser
syntax: browser
set _APP_HOME /tmp

includes the default and the current working directory
putenv PATH=_COMMON_PATH

putenv TERM=_COMMON_TERM

putenv LD_LIBRARY_PATH=_DEFAULT_LD_LIBRARY_PATH

putenv DISPLAY _COMMON_DISPLAY

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

path allow read _COMMON_X_READ

network read set for accessing network.
path allow read _NETWORK_READ _NETWORK_LOAD

#should be allowed to connect to ip addresses
specified in the definition.

connect allow tcp $ipl $ip2 $ipn

#allowed to connect to the x-server.

connect allow display

#all the children must belong to class viewer

childbox viewer

#should rename /etc/passwd

rename read /etc/passwd /tmp/foo

Figure B.4: Configuration for browser class

73

configuration file for application compiler
syntax: compiler (idir, odir, libdir)

reads files from idir, generates output in odir

H H

using libraries in libdir.

set _APP_HOME /tmp

includes the default and the current working directory
putenv PATH=_COMMON_PATH:$dir
putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

includes the default and the current working directory.
path allow read _COMMON_READ $idir $odir $libdir

path allow write _COMMON_WRITE $odir

path allow read,exec _COMMON_EXEC

allowed to spawn filters
childbox filter

Figure B.5: Configuration for the compiler class

74

configuration file for application getinfo

syntax: getinfo (IP address, dir)

set _APP_HOME /tmp

includes the default and the current working directory
putenv PATH=_COMMON_PATH:$dir
putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE $dir

path allow read,exec _COMMON_EXEC

network read set for accessing network.
path allow read _NETWORK_READ _NETWORK_LOAD

#should be allowed to connect to ip addresses
specified in the definition.

connect allow tcp $ip

Figure B.6: Configuration for the getinfo class

75

configuration file for application info provider

syntax: infop (dir)

dir is the name of the directory from which app

uploads files. (must be absolute path).

set _APP_HOME /tmp

includes

the default and the current working directory

putenv PATH=_COMMON_PATH:$dir
putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY__PATH

includes
path allow
path allow
path allow
path allow

the default and the current working directory.
read _COMMON_READ

write _COMMON_WRITE

read,exec _COMMON_EXEC

read $dir

network read set for accessing network.

path allow

read _NETWORK_READ _NETWORK_LOAD

accpet allowed from specific machines.
accept allow * $ipl $ip2 $ip3:NON_SYSTEM_PORT

Figure B.7: Configuration for the info provider class

76

configuration file for application coordinating server.
syntax: server (ipl, ip2, ..., ipm)

list of ip addresses where clients or servers are located.

set _APP_HOME /tmp

includes the default and the current working directory
putenv PATH=_COMMON_PATH
putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY__PATH

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

path allow read _COMMON_X_READ

network read set for accessing network.
path allow read _NETWORK_READ _NETWORK_LOAD

accpet allowed from specific machines.
accept allow * $ipl $ip2 $ipn:NON_SYSTEM_PORT

#allowed to connect to the x-server.

connect allow display

#allowed to spawn trabsform

childbox transform

Figure B.8: Configuration for the server class

7

configuration file for application transform.
syntax: transform (inputfile, outputfile)

absolute path is specified.

set _APP_HOME /tmp

#includes the default and the current working directory.
putenv PATH=_COMMON_PATH

putenv HOME=_COMMON_HOME

putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

path allow read $inputfile

path allow read, write $outputfile

Figure B.9: Configuration for the transformer class

78

configuration file for application upload
syntax: upload (IP address, dir)
dir is the name of the directory from which app

uploads files. (must be absolute path).
set _APP_HOME /tmp

includes the default and the current working directory
putenv PATH=_COMMON_PATH:$dir
putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY__PATH

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

path allow read $dir

network read set for accessing network.
path allow read _NETWORK_READ _NETWORK_LOAD

connect allowed only to ’machine name’.
connect allow * $machine-name:NON_SYSTEM_PORT

Figure B.10: Configuration for the upload class

79

configuration file for application viewer.

syntax: viewer (inputfilel, inputfile2, .., inputfilen)

set _APP_HOME /tmp

#includes the default and the current working directory.
putenv PATH=_COMMON_PATH

putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

putenv DISPLAY=_COMMON_DISPLAY

putenv TERM=_COMMON_TERM

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

path allow read _COMMON_X_READ

path allow read _NETWORK_LOAD

path allow read $inputfileil, $inputfile2, $inputfilen

#will need these libraries
path allow read _MISC_LIBS

#allowed to do x-stuff.

connect allow display

Figure B.11: Configuration for viewer class

80

configuration file for application editor.

syntax:

editor (inputfilel, inputfile2, .., inputfilen)

set _APP_HOME /tmp

#includes the default and the current working directory.
putenv PATH=_COMMON_PATH

putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

putenv DISPLAY=_COMMON_DISPLAY

putenv TERM=_COMMON_TERM

includes

path
path
path
path
path
path

allow
allow
allow
allow
allow

allow

#will need

path

allow

the default and the current working directory.
read _COMMON_READ

write _COMMON_WRITE

read,exec _COMMON_EXEC _BIN_UTILS

read _COMMON_X_READ

read _NETWORK_LOAD

read,write $inputfileil, $inputfile2, $inputfilen

lot of other libraries...
read _MISC_LIBS

#allowed to do x-stuff.

connect allow display

need to spawn utilities like spell-check.

childbox transformer

Figure B.12: Configuration for the editor class

81

configuration file for application applet
syntax: applet (IP address)

set _APP_HOME /tmp

includes the default and the current working directory
putenv PATH=_COMMON_PATH

putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

putenv DISPLAY=_DEFAULT_DISPLAY

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

network read set for accessing network.
path allow read _NETWORK_READ _NETWORK_LOAD

#should be allowed to connect to ip addresses
specified in the definition.
connect allow tcp $ip

connect allow display

Figure B.13: Configuration for the applet class

82

configuration file for application game

syntax: game

set _APP_HOME /tmp

includes the default and the current working directory
putenv PATH=_COMMON_PATH

putenv LD_LIBRARY_PATH=_COMMON_LD_LIBRARY_PATH

putenv DISPLAY=_DEFAULT_DISPLAY

includes the default and the current working directory.
path allow read _COMMON_READ

path allow write _COMMON_WRITE

path allow read,exec _COMMON_EXEC

allowed to be an x-client.

connect allow display

Figure B.14: Configuration for the game class

83

Appendix C

Handling X protocol requests

In this appendix, we list all X protocol requests and the corresponding action that
we take for each of them. Only requests are filtered. Replies, errors and events
are not filtered. If a particular request is to be disallowed then the request is
converted to an illegal request usually be changing the resource ID to an illegal
resource ID. Selected X extension requests are handled by the X filter. The requests
and the corresponding action are listed in the tables 2, 3, 4, 5, 6, 7 and 8. All other

extensions are currently disallowed.

X protocol request Action
X _CreateWindow ALLOW as long parent is own window or ROOT
X_ChangeWindowAttributes ALLOW as long as own window
X_GetWindowAttributes ALLOW as long as own window
X _DestroyWindow ALLOW as long as own window
X DestroySubwindows ALLOW as long as own window
X_ChangeSaveSet DENY

84

X protocol request

Action

X_ReparentWindow

ALLOW as long as own window

X _MapWindow

ALLOW as long as own window

X _MapSubwindows

ALLOW as long as own window

X_UnmapWindow

ALLOW as long as own window

X_UnmapSubwindows

ALLOW as long as own window

X_ConfigureWindow

ALLOW as long as own window

X _CirculateWindow

ALLOW as long as own window

X_GetGeometry

ALLOW as long as own drawable

X_QueryTree

ALLOW as long as own window

X _InternAtom

ALLOW

X_GetAtomName

ALLOW as long as own window

X_ChangeProperty

ALLOW as long as own window

X_DeleteProperty

ALLOW as long as own window

X_GetProperty

ALLOW as long own window

X _ListProperties

ALLOW as long as own window

X _SetSelectionOwner DENY
X_GetSelectionOwner DENY
X_ConvertSelection DENY
X_SendEvent DENY
X_GrabPointer DENY

X _UngrabPointer ALLOW

X_GrabButton ALLOW

X_UngrabButton ALLOW
X_ChangeActivePointerGrab DENY
X_GrabKeyboard DENY

X _UngrabKeyboard ALLOW

X_GrabKey ALLOW

85

X protocol request Action

X_UngrabKey ALLOW
X_AllowEvents ALLOW
X_GrabServer DENY
X_UngrabServer DENY
X_QueryPointer ALLOW
X_GetMotionEvents ALLOW as long as own window
X _TranslateCoords | ALLOW as long both src and dst windows are own
X_WarpPointer DENY
X_SetInputFocus DENY
X_GetInputFocus DENY
X_QueryKeymap ALLOW
X_OpenFont ALLOW
X_CloseFont DENY
X_QueryFont ALLOW
X_QueryTextExtents ALLOW
X_ListFonts ALLOW
X _ListFontsWithInfo ALLOW
X _SetFontPath DENY
X_GetFontPath ALLOW
X _CreatePixmap ALLOW as long as own window
X _FreePixmap ALLOW as long own pixmap
X _CreateGC ALLOW as long own window
X_ChangeGC ALLOW as long as own GC
X_CopyGC ALLOW as long the dst GC is your own
X _SetDashes ALLOW as long as own GC
X _SetClipRectangles ALLOW as long as own GC
X _FreeGC ALLOW as long own GC
X _ClearArea ALLOW as long own drawable

86

X protocol request

Action

X_CopyArea

ALLOW when src and dst drawables are own

X_CopyPlane

ALLOW when src and dst drawables are own

X _PolyPoint

ALLOW as long as own drawable

X_PolyLine

ALLOW as long as own drawable

X_PolySegment

ALLOW as long as own drawable

X_PolyRectangle

ALLOW as long as own drawable

X PolyArc

ALLOW as long as own drawable

X_FillPoly

ALLOW as long as own drawable

X _PolyFillRectangle

ALLOW as long as own drawable

X _PolyFillArc

ALLOW as long as own drawable

X_PutImage

ALLOW as long as own drawable

X_GetImage

ALLOW as long as own drawable

X _PolyText8

ALLOW as long as own drawable

X_PolyText16

ALLOW as long as own drawable

X_ImageText8

ALLOW as long as own drawable

X ImageText16

ALLOW as long as own drawable

X _CreateColormap

ALLOW when window is own or ROOT

X _FreeColormap

ALLOW when colormap is your own

X_CopyColormapAndFree

ALLOW when colormap is your own

X InstallColormap

DENY

X _UninstallColormap

DENY

X _ListInstalledColormaps

ALLOW when it is your own window or ROOT

X_AllocColor

ALLOW when colormap is your own

X_AllocNamedColor

ALLOW when colormap is your own

X_AllocColorCells

ALLOW when colormap is your own

X_AllocColorPlanes

ALLOW when colormap is your own

X_FreeColors

ALLOW when colormap is your own

X_StoreColors

ALLOW when colormap is your own

87

X protocol request

Action

X_StoreNamedColor ALLOW as long as colormap is your own
X_QueryColors ALLOW
X_LookupColor ALLOW
X _CreateCursor ALLOW

X _CreateGlyphCursor ALLOW
X _FreeCursor ALLOW as long as own cursor
X _RecolorCursor ALLOW as long as own cursor
X_QueryBestSize ALLOW
X_QueryExtension ALLOW
X _ListExtensions ALLOW
X_ChangeKeyboardMapping DENY
X_GetKeyboardMapping ALLOW
X_ChangeKeyboardControl DENY
X_GetKeyboardControl ALLOW
X Bell ALLOW
X_ChangePointerControl DENY
X_GetPointerControl ALLOW
X _SetScreenSaver DENY
X_GetScreenSaver ALLOW
X_ChangeHosts DENY
X _ListHosts DENY
X _SetAccessControl DENY
X _SetCloseDownMode ALLOW
X _KillClient DENY
X_RotateProperties ALLOW as long as own window
X _ForceScreenSaver DENY
X _SetPointerMapping DENY
X_GetPointerMapping ALLOW
X protocol request Action

X_SetModifierMapping | DENY

X_GetModifierMapping | ALLOW

X _NoOperation ALLOW

Table C.1: Protocol requests and the corresponding actions.

88

Shape extension request Action

X _ShapeQueryVersion ALLOW
X_ShapeRectangles ALLOW as long as own window
X_ShapeMask ALLOW as long as own window
X_ShapeCombine ALLOW as long as own window
X _ShapeOffset ALLOW as long as own window

X_ShapeQueryExtents | ALLOW as long as own window

X _ShapeSelectInput ALLOW as long as own window

X _ShapelnputSelected | ALLOW as long as own window

X _ShapeGetRectangles | ALLOW as long as own window

Table C.2: Shape extension requests and the corresponding actions.

| MIT-SHM request Action
X_ShmQueryVersion ALLOW
X_ShmAttach ALLOW
X_ShmDetach ALLOW

X_ShmPutImage ALLOW as long as own drawable
X_ShmGetImage ALLOW as long as own drawable
X_ShmCreatePixmap | ALLOW as long as own drawable

Table C.3: MIT-SHM requests and the corresponding actions.

mit screen-saver requests ‘ Action ‘

X_ScreenSaverQuerylInfo DENY

X _ScreenSaverSelectInput DENY
X_ScreenSaverSetAttributes | DENY
X _ScreenSaverUnsetAttributes | DENY

Table C.4: MIT screen-saver requests and the corresponding actions.

89

Double Buffer request

Action

X_DbeGetVersion

ALLOW

X_DbeAllocateBackBufferName

ALLOW as long as own drawable

X_DbeDeallocateBackBufferName

ALLOW as long as own buffer

X_DbeSwapBuffers

ALLOW as long as all windows are own

X _DbeBeginldiom

ALLOW

X_DbeEndIdiom

ALLOW

X _DbeGetVisuallnfo

ALLOW as long as all windows are own

X_DbeGetBackBufferAttributes

ALLOW as long as own buffer

Table C.5: Double buffer extension requests and the corresponding actions.

Multi-buffer request

Action

X_MbufGetBufferVersion

ALLOW

X_MbufCreateImageBuffers

ALLOW as long as own window

X_MbufDestroyImageBuffers

ALLOW as long as own window

X_MbufDisplayImageBuffers

ALLOW as long as own window

X_MbufSetMBuffer Attributes

ALLOW as long as own window

X_MbufGetMBuffer Attributes

ALLOW as long as own window

X _MbufSetBuffer Attributes

ALLOW as long as own buffer

X_MbufGetBuffer Attributes

ALLOW as long as own buffer

X_MbufGetBufferInfo

ALLOW as long as own window

X_MbufCreateStereoWindow

ALLOW as long as own windowparent

X MbufClearImageBuffer Area

ALLOW as long as own buffer

Table C.6: Multibuffer extension requests and the corresponding actions.

Xtest request ‘ Action ‘
X_TestFakelnput DENY
X_TestGetInput DENY
X _TestStopInput DENY

X_TestReset DENY

X _TestQueryInputSize | DENY

Table C.7: Xtest extensions and the corresponding actions.

90

sun allplanes request

Action

X_AllPlanesQuery Version

ALLOW

X_AllPlanesPolyPoint

ALLOW as long as own drawable

X_AllPlanesPolyLine

ALLOW as long as own drawable

X_AllPlanesPolySegment

ALLOW as long as own drawable

X_AllPlanesPolyRectangle

ALLOW as long as own drawable

X_AllPlanesPolyFillRectangle

ALLOW as long as own drawable

Table C.8: Sun allplanes extensions and the corresponding actions.

91

Bibliography

[1]

[10]

Tan Goldberg, David Wagner, R. Thomas and Eric Brewer: A Secure Envi-
ronment for Untrusted Helper Applications. In USENIX security symposium
1996.

Anurag Acharya, Guy Edjlali, Vipin Choudhary: History-based Access Control
for Mobile Code. To appear in ACM CCCS-98.

Dan Wallach, Dirk Balfanz, Drew Dean, Edward Felten: Extensible Security
Architectures for Java. In Technical Report 546-97, Dept. of Computer Science,
Princeton University 1997.

Koral Ilgun: A Real-time Intrusion Detection System for UNIX. Masters The-
sis, Dept. of Computer Science, UCSB 1992.

Adrian Nye: Xlib Programming Manual. O’Reilly and Associates, Inc. 1992.
Scott Oaks: Java Security. O’Reilly and Associates, Inc. 1998.

C. Ko, G. Fink and K. Levitt: Automated Detection of Vulnerabilities in privi-
leged programs by execution monitoring. In Proceeding. 10th Annual Computer
Security Applications Conference, pages 134-44, 1994.

Robert Wahbe, et al.: Efficient software-based fault isolation. In Proc. of the
Symp. on Operating System Principles, 1993.

Nick Lai and Terrance Gray.: Strengthening discretionary access controls to
inhibit Trojan Horses. In Summer 1988, USENIX conference, pages 275-286.

P Karger.: Limiting the damage potential of the discretionary trojan horse.
In Proceedings of the 1987 IEEE Symp. on Research in Security and Privacy,
1987.

92

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

William LeFevre.: Restricting network access to system daemons under SunOS.
In UNIX Security Symp. III Proc., pages 93-103, USENIX 1992.

David G. Korn and Eduardo Krell.: The 3-D file system. In Proc. of the 5th
USENIX UNIX Security Symp., 1995.

Glenn S. Fowler, et al.: A user-level replicated file system. In Summer 1993
USENIX Conf. Proc., pages 279-290, USENIX 1993.

M. Blaze, J. Feigenbaum, and J. Lacy.: Decentralized trust management. In
Proc. of the 17th Symp. on Security and Privacy, pages 164-73, 1996.

C. Gunter and T. Jim.: Design of an application-level security infrastructure. In
DIMACS Workshop on Design and Formal Verification of Security Protocols,
1997.

T. Jeaeger, A. Prakash, and A. Rubin.: Building systems that flexibly control
downloaded executable context. In Proc of the 6th USENIX Security Symp.,
1996.

S. Jajodia, et al.: A unified framework for enforcing multiple access control
policies. In Proc. ACM SIGMOD Int’l. Conf. on Mgmt. of Data, pages 134-44,
1994.

Armando Fox, et al.: TranSend: Transformational proxy service. University of

California, Berkeley.

Peter Cappello, Mike Neary, et al.: Javelin: Internet based global computing
using Java. ACM workshop on Java for Science and Engineering Computation,
Las Vegas, 1997.

Steven Eckmann.: Language and Taxonomy for State Transition Represen-
tation of Scenarios in Intrusion Detection Systems. PhD proposal, Univ. of
California, Santa Barbara, 1998.

Kenneth Walker, Daniel Sterne, M Lee Badger, et al.: Confining Root Programs
with Domain and Type Enforcement (DTE). In Sizth USENIX UNIX Security
Symposium, San Jose 1996.

Mike Jones: Interposing Agents: Transparently Interposing User Code at the
System Interface In SIGOPS 1993.

93

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Brian Bershad, Stephen Savage, Susan Eggers, et al.: Extensibility, Safety and
Performance in the SPIN Operating System In Proc. of the 15th ACM Symp.
on Operating System Principles, pages 164-73, 1996.

Robert Wahbe, Steve Lucco, T. Anderson, Susan Graham: Efficient Software-
Based Fault Isolation In Proc. of the 15th ACM Symp. on Operating System
Principles, pages 164-73, 1993.

Peter Lee and George Necula: Proof-Carrying Code CMU Technical Report.

Doug Ghormley, Steve Rodrigues, Dave Petrou, T. Anderson: SLIC: An Exten-
sibility System for Commodity Operating Systems To appear in 1998 USENIX

conference.

M. Litzkow, M. Livny, and M. W. Mutka: The Condor System In Proceedings
of the 8th International Conference of Distributed Computing Systems, pp. 104-
111, June, 1988.

Paul Kmiec: Consh: Confined Execution Environment for Internet Applica-

tions Masters Thesis, University of California Santa Barbara, 1998.

Albert Alexandrov, Max Ibel, Klaus Schauser: Extending the Operating Sys-
tem at User Level: the UFO global file system In Proceedings of the USENIX
1997 Annual Technical Conference, pp. 77-90, Anaheim, CA, January 6-10,
1997.

94

