Copyright (C) 2000 WireX Communications, I nc.

SubDomain™ :
Parsimonious Server Security

WireX™ Communications, Inc.

WWW.wirex.com

WWwWWwW.immunix.org

Crispin Cowan
Steve Beattie
Greg Kroah-Hartman
Calton Pu
Perry Wagle
Virgil Gligor
Abstract

Internet security incidents have shown that while network cryptog-
raphy tools like SSL are valuable to Internet service, the hard prob-
lem is to protect the server itself from attack. The host security
problem is important because attackers know to attack the weakest
link, which is vulnerable servers. The problem is hard because
securing a server requires securing every piece of software on the
server that the attacker can access, which can be a very large set of
software for a sophisticated server. Sophisticated security architec-
tures that protect against this class of problem exist, but because
they are either complex, expensive, or incompatible with existing
application software, most Internet server operators have not cho-
sen to use them.

This paper present SubDomain: an OS extension designed to pro-
vide sufficient security to prevent vulnerability rot in Internet
server platforms, and yet simple enough to minimize the perfor-
mance, administrative, and implementation costs. SubDomain does
this by providing a least privilege mechanism for programs rather
than for users. By orienting itself to programs rather than users,
SubDomain simplifies the security administrator’s task of securing
the server.

This paper describes the problem space of securing Internet servers,
and presents the SubDomain solution to this problem. We describe
the design, implementation, and operation of SubDomain, and pro-
vide working examples and performance metrics for services such
asHTTP, SMTP, POP, and DNS protected with SubDomain.



Copyright (C) 2000 WireX Communications, I nc.

1 Introduction

Common server operating systems such as Linux, Windows, Solaris, etc. are subject to vulnerabil-
ity rot as security vulnerabilities (i.e. implementation bugs) are discovered in the component soft-
ware of these operating systems. For instance, a buffer overflow discovered in the BIND domain
name server [15] allowed remote attackersto gain root privileges on avariety of system platforms,
and asimilar vulnerability in Microsoft’s11S (web server) [21] allows remote attackersto gain ad-
ministrative control of Windows servers. The recommended defense for general purpose serversis
to keep the host system up to date with vendor patches to close these vulnerabilities.

However, many of these systems are being pressed into use asthe basis for server appliances: serv-
ersintended for largely unattended operation by unskilled users. But because these operating sys-
tems are subject to vulnerability rot, they need to be frequently upgraded with vendor patches.
While thisis an acceptable approach for general purpose servers (where a skilled system adminis-
trator is expected to maintain the system) it is not acceptable to appliance users, who expect a de-
vice with the maintenance factor of atoaster.

The classical security solution to vulnerability rot is the notion of least privilege: the technique of
granting subjectsin a system precisely the capabilities they need to perform their function, and no
more [33]. Effective use of least privilege minimizes the potential damage that results when atrust-
ed program is penetrated by minimizing the degree to which the program is trusted.

Security architectures that provide least privilege mechanisms exist, but because they are either
complex, expensive, or incompatible with existing application software, appliance vendors have
not chosen to use them. Existing defenses entail these complexities precisely because they were
designed to handle the generality of a general purpose server, and thus must deal with user least
privilege. This generality complicates the least privilege abstraction, making the enforcement
mechanism more complex to implement and use.

This paper present SubDomain: an OS extension designed to provide sufficient security to prevent
vulnerability rot in server appliances, and yet simplify as much as possible to minimize the perfor-
mance, administrative, and implementation costs. SubDomain does this by providing aleast priv-
ilege mechanism for programs rather than for users. The security restrictions complement the sys-
tem’s existing permissions, allowing a program to be secured independent of who may be using
the program. Thisnotion is especially effective on server appliances, and enables program-specific
confinement information to be distributed with the program (see Section 4).

By specifically addressing least privilege for programs, we can provide amechanismthat hasarel-
atively small implementation and simple operation. Small implementations are important for secu-
rity systemsto avoid vulnerabilities due to bugs in the enforcement mechanism itself. Simple op-
eration isimportant for security systemsto avoid misconfiguration. Even more so than in most OS
designissues, parsimony iscritical to security [33] making SubDomain’ srelative simplicity of de-
sign and implementation an important feature.

We present the SubDomain notation for recursively specifying the sub-domain of resources avail-
able to a software component, our implementation of SubDomain as an enhancement to the Linux
kernel, our application of SubDomain confinement to several example applications, performance
metrics on the cost of SubDomain confinement, and our analysis of the security of a system pro-
tected by SubDomain.



Copyright (C) 2000 WireX Communications, I nc.

The challenge of supporting least privilege is to provide a specification system that is expressive
enough to specify privileges that are actually minimal, is convenient enough that administrators
can reasonably specify least privileges, and yet preserves compatibility and performance. While
SubDomain strives for simplicity relative to other least privilege mechanisms, it provides for finer
granularity least privilege in one important regard: SubDomain can confine arbitrary software
components, at afiner granularity than the native OS process, i.e. procedures and modules. Thisis
especially important for component-based services such as Apache [2] and its loadable modules
(see Section 3.2).

The rest of this paper is organized as follows. Section 2 elaborates on the problem of vulnerable/
buggy software, and describes the abstract solution of least privilege to minimize the potential
damage due to attacks against vulnerable software. Readers familiar with least privilege can skip
ahead to Section 3, which describes the SubDomain security enhancement, and how it advances
over previous least privilege mechanisms by providing finer granularity, and simplifying the prob-
lem of confining suspect programs. Section 4 demonstrates SubDomain’ s compatibility by confin-
ing assorted software components, including sub-process modules. Section 5 presents the perfor-
mance costs of SubDomain confinement. Section 6 describes related work specifically addressing
the problem of confining suspect programs. Section 8 presents our conclusions.

2 TheProblem: Vulnerable Programsand Least Privilege

Many security vulnerabilities result from bugsin “trusted” programs. A “trusted program” isapro-
gram that runs with privilege that some attacker would like to have, and the program fails to keep
that trust if there is a bug in the program that alows the attacker to acquire that privilege. Some
examplesinclude:

Buffer Overflows: Many privileged programs contain “buffer overflow” vulnerabilities, a prob-
lem endemic to C programs that provide poor bounds checking on user-supplied input. Buffer
overflows are very common [6, 7] and very dangerous[21, 20], alowing attackersto take con-
trol of programs from an anonymous node on the internet.

Race Conditions: Many privileged programs also contain “race condition” vulnerabilities. Here,
the problem is that carelessr oot privileged processes create files without adequate checking
for the prior existence of the file. The problemisthat the attacker can create a symbolic or hard
link in the file system between the time the privileged program checksfor existence and the time
it createsthefile, with theresult that ther oot program unwittingly usesits authority to corrupt
some other critical file [12].

Special Character Processing: Whilefew r oot privileged programsare written in shell scripting
languages, many other programs with “interesting” privileges are written as shell scripts, espe-
cialy CGI/PERL [41] programsfor processing web forms. CGI programs run with the authority
of the web server, and must process arbitrary input from arbitrary users. If the attacker can pro-
vide input (using creative URLS) to a CGI program that yields control to the attacker, then the
attacker can gain control of the web server, e.g. the PHF program (included in early NCSA and
Apache web servers) alowed the attacker to present a URL to the web server that would cause
PHF to start an xt er mon the attacker’s display [14].

Note that while “trusted” usually refers to highly privileged processes (e.g. r oot processes) they
can actually be processes withany privilegesthat the attacker wants but does not have. The general



Copyright (C) 2000 WireX Communications, I nc.

caseisthat any program installed on a computer that processes input from potentialy hostile users
becomes a potential vulnerability. Eliminating these vulnerabilities requires some form of assur-
ance that the program in question does not contain exploitable bugs, but this kind of assurance is
problematic. Some classes of bugs, e.g. buffer overflow vulnerabilities, can be eliminated through
various compiler techniques[39, 5, 26, 37]. Other forms of vulnerabilities are undetectable at com-
pile time, e.g. race conditions [12] and general logic errors.

The only way to assure the complete absence of a security vulnerability in a program is through
expensive manual verification. In the absence of such verification, one must either suffer the risk
of potential vulnerabilities, or contain the potential damage. Notethat the activitieswe seek to con-
strain are “those that cause damage to the system,” i.e. safety properties [1] with respect to integ-
rity. We are not addressing other security issues, such asinformation flows[27] that might disclose
secrets. Readers already familiar with least privilege mechanisms can skip to Section 3 for a de-
scription of Subdomain, our contribution to the field.

2.1 The Solution: Least Privilege

The classic solution to the problem of unknown security vulnerabilitiesisto perform each activity
with theleast privilege required to complete that task [33]. While this does not stop exploitation of
these vulnerahilities, it does contain the damage as much as possible. An attacker who gets control
of aleast privilege process can, at most, read secrets and corrupt datathat the exploited process has
access to, and no more.

The challenge of supporting least privilege is to provide a sufficiently fine-grained mechanism to
specify privilegesthat are actually minimal, while also preserving compatibility and performance.
It is conceptually simple to divide system privileges into fine-grained units and then attribute the
exact required privilegesto agiven activity, but the result of such an approach is specification no-
tation that is tedious to maintain (breaking compatibility) and an enforcement mechanism that is
slow (breaking performance).

Practical least privilege therefore involves abstracting the system resources to expedite least priv-
ilege specifications. Matching least privilege abstractions to native OS resources in turn enables
efficient least privilege enforcement. Least privilege is aso a useful notion in managing user priv-
ileges, leading many systemsto combine least privilege for users and programsinto a single mech-
anism, as described in Section 2.1.1.

However, if the problem is bugs in programs that can be accessed by completely untrusted users,
then user-oriented least privilege mechanisms may become awkward or inadequately expressive.
Section 2.1.2 describes some more elegant approaches to using user privilege mechanismsto con-
fine suspect programs. Section 3 discusses SubDomain, our OS security enhancement that partic-
ularly address the problem of least privilege for programs, and Section 6 discusses related work
specifically aimed at program confinement.

2.1.1 Using User Privilegesto Confine Programs

Least privilege for usersisaclassic way of structuring a system, and many operating systems pro-
vide facilitiesfor constraining the privileges of agiven user. User-oriented least privilege facilities
can be adapted to confining collection of programs by creating a synthetic user, and then running
the program as that user.



Copyright (C) 2000 WireX Communications, I nc.

The classic example isthe UNIX setuid facility: theset ui d bit for an executable file indicates that
the program runs with the privilege of the owner of the file instead of the privilege of the invoking
user. Often thisisused to create set ui d r oot programs that provide controlled access to pro-
tected resources by expanding the privileges the program runs with to be all of r oot ’ s privileges.
To use set ui d to confine a program to a smaller set of resources, a new synthetic user can be
created that has those privileges, e.g. nobody. Programs can then be madeset ui d nobody to
confine their actionsto a small set of privileges.

One limitation to this approach isthat all user-1Ds, even synthetic user-1Ds, can access all fileson
the system that permit “ other” accesses. Another limitation to this approach is that only root can
create new user-1Ds. The result is that normal users cannot construct ad hoc “sandboxes’ for pro-
gramsthat they may chooseto install and run. Users are then left with their choice of:

* beg the system administrator to create a new user-1D for them,
» do not install software that is not trusted,
* rununtrusted software without protection, none of which is very appealing.

Soin principle, synthetic user-IDsand theset ui d mechanism can support least privilege for pro-
grams, but in practiceit forcesr oot to do all thework. Thereforethistechniqueisrarely deployed,
people run un-trustworthy software with much more privilege than is necessary, and suffer the con-
sequent security risks.

2.1.2 Usersand Roles

Because synthesizing user-1Ds is awkward, the notion of arole emerged. A roleis a collection of
related privileges[2]. In 1986, Bobert and Kain introduced the notion of type enforcement: objects
(files) are assigned to types, subjects (processes) are assigned to domains, and tables determine
which domains have accessto which types. Badger et al expanded onthisnotion[7, 8]. Inasimilar
vein, role-based access control (RBAC) [22, 34] assigns usersto roles, and then grants privileges
to theroles.

Similar to theset ui d approach described in Section 2.1.1, roles can be pressed into service con-
fining programs to aleast privilege set of resources by assuming a specific role just prior to exe-
cuting the program. While using roles to confine programs is more elegant than synthesizing user-
IDs, it is still fundamentally overloading a user-oriented access control mechanism to manage soft-
ware defects. In Section 3, we describe our mechanism to specifically address the problem of vul-
nerable software.

3 SubDomain Security: Recursive Component Confinement

SubDomain is a kernel extension designed specifically to provide least privilege confinement to
suspect programs. SubDomain allows the administrator to specify the domain of activitiesthe pro-
gram can perform by listing the files the program may access, and the operations the program may
perform. SubDomain restrictions complement the native access controls, in that SubDomain never
expands the set of files a program may access, i.e. any file access must pass the native access con-
trols and the SubDomain restrictions before access is granted. Thus SubDomain confinement
makes a program monotonically safer to run.



Copyright (C) 2000 WireX Communications, I nc.

foo {
/etc/readne
/etc/witenme
/usr/ bi n/ bar
[mydir/*

}

—1><§—1

Figurel Trivial SubDomain

Section 3.1 describes the SubDomain notation and semantics. Section 3.2 explains how SubDo-
main leverages work in safe programming models like proof-carrying code [30] to achieve com-
ponent confinement below the granularity of a native process. Section 3.3 describes the SubDo-
main implementation.

3.1 SubDomain Notation & Semantics

Figure 1 shows atrivial SubDomain specification, in which thef oo program is given read access
tothe/ et c/ r eadne file, write accessto the/ et ¢/ wr i t ene file, and execute accessto the/
usr/ bi n/ bar file. When ever the programf 0o isrun, by any user, it isrestricted to accessthese
specified files with these modes. SubDomain profiles can also grant access to directories through
simple globbing, i.e. the profile in Figure 1 grantsthef oo programto all filesin/ mydi r .

The x (execute) capability is of particular importance: what restrictions should apply to the child
process? By default, the child process inherits the parent’s SubDomain, preventing the confined
program from “escaping” its confinement by executing an unrestricted child process. However,
sub-components of an application may require different capability sets than the application as a
whole. For instance, games only need strong privilegesto initialize video controllers, and mail de-
livery agents only need strong privilegesto actually writeto auser’ smail box. Thuschild programs
can be given different constraints by specifying arelative subdomain, denoted by ax followed by
a+ or - followed by a SubDomain specification. For example, Figure 2 shows a SubDomain for
f 00 that saysthat when the sub-component bar isrun, it can also have write permission to the/
et c/ ot herw it e file. Conversely, it saysthat whenf oo runs the sub-component baz, it may
not writetothe/ et c/ wri t ene file.

Sub-components may also want a SubDomain that is completely unrelated to the parent domain.
For example, a web server application might need to send some e-mail while processing a web
form, and thus invokes a mail delivery agent whose SubDomain is completely different. We sup-
port this need with absolute subdomains, denoted by a subdomain specification following an x
without a + or a-. Figure 3 shows an example absolute subdomain in which the bar program run
fromthef oo program has access to a completely different subdomain than the f oo program.

When a confined processtriesto perform afile operation that is not permitted, two things happen:

foo {

/etc/readne ro,

letc/witeme w,

[ usr/ bi n/ bar X +{/etc/otherwite wo,
[ usr/ bin/ baz X -{/etc/witene wo,

}
Figure2 Relative SubDomain



Copyright (C) 2000 WireX Communications, I nc.

1. The syscall returns with the error EPERM, just as if the attempt had failed due to a standard
UNIX file system permission error.

2. The kernel generates a syslog entry describing the attempted violation. Intrusion detection sys-
tems can thus collect what ever information they want, and act accordingly.

3.2 Sub-process Confinement

Section 6 describes several other systemsthat provide program-confinement mechanisms. Howev-
er, with the exception of Java[4] the smallest component that they can confine is a native OS pro-
cess. In contrast, SubDomain provides the unique feature of being able to confine components that
are only aportion of an OS process. Historically of little practical interest, the need for sub-process
confinement comes from the rise in popularity of scriptable servers and loadable modules. Let us
expand upon these concepts.

A “scriptable server” is a server program that, from time to time, interprets a script or a program
within itself, i.e. server-side includes [5], PHP web pages [6], Java serviets[3], etc. Such scripts
are legitimately sub-component programs requiring separate confinement. Scriptable servers often
have their own security mechanisms, but in depending on such restrictions, we are depending on
application correctness, which isthe dependence we seek to avoid inthefirst place. Wewould rath-
er have a confinement mechanism that can be enforced by the operating system so that we do not
depend on the correctness of the server application.

“ Loadable modules’ or “ plug-ins’ is the notion of providing a (fairly) fixed API in an application
so that extensions to can be loaded into the application, either at start-time or run-time. “Plug-in”
is the common term for desktop applications (i.e. Netscape Navigator & Shockwave, Microsoft
Word and EndNote) while “ module” isthe common term for servers (e.g. Apache and mod_perl).

Thenod_per | modulefor Apache provides aperfect example of the sub-process problem. PERL
scripts run at the behest of the Apache web server are normally interpreted by starting a separate
processto runthe PERL interpreter, and then interpreting the PERL script in that separate process.
nmod_per | loadsaPERL interpreter directly into the Apache processto avoid the cost of starting
the PERL interpreter process. While thisis good for server throughput, it is bad for security:

* Bugsinnod_per | can crash the Apache web server process.

» Program-confinement mechanismsthat only operate on OS processes cannot confine scriptsin-
terpreted by nod_per | separate from the Apache web server process.

The SubDomain solution to the “scripting & module” problem is to provide for subdomains for
sub-process components, in cooperation with the enclosing application. The notation for a sub-pro-
cess subdomain is unchanged from that of separate-process subdomains shown in Figure 1 through

foo {

/etc/readne r,

/etc/witenme w,

[ usr/ bi n/ bar X {
/fusr/lib/otherread r,
/var/opt/otherwite W,

.
Figure3 Absolute SubDomain



Copyright (C) 2000 WireX Communications, I nc.

Figure 3. The effect isto create avariety of “hats’ that process can wear, one for each sub-process
component that it calls. The “cooperation” required from the enclosing program is that it should
call thenew change hat () system call before calling the sub-process component.

The requirement to call change_hat () impliesthat we are once again trusting the application,
which SubDomain is supposed to avoid. However, we are trusting the application code agreat deal
less, in that the application only hasto make appropriate callstochange_hat () , whichismuch
simpler than constructing and enforcing an effective“ sandbox” environment [9]. Successfully call-
ing change_hat () with the name of a sub-component before calling the sub-component seems
easy enough to do correctly.

In addition to the requirement that enclosing application correctly callschange hat (), weaso
require that the sub-component does not call change _hat () to escape to amore liberal subdo-
main. Here, we employ a cookie argument to change hat() to prevent the confined module from
escaping. The containing process initially calls change_hat () with a particular cookie value,
and further change_hat () callsthat do not provide a matching cookie argument are treated as
security violations.

Thus for the containing process to prevent sub-component from escaping from the
change_hat () SubDomain, it need only provide a cookie value that the contained sub-compo-
nent cannot easily guess. We recommend fetching aword from/ dev/ r andom but any reason-
able source of entropy can be used.

The security of this method depends on the sub-component not being able to read the parent pro-
cess s cookie value. Here, SubDomain can leverage the power of language-based security protec-
tion systems such as proof-carrying code [30], strong type checking [39, 26, 37], and other lan-
guage-based protection schemes [ 24, 40]. Such methods can, in principle, prove that the sub-com-
ponent will not invoke thechange hat () systemcall.

Programing language techniques provide powerful protection, but also impose significant practical
constraints, not the least of which isthat the sub-component needs to be written in aparticular lan-
guage. In practice, we can still get reasonable assurance that the sub-component cannot read the
containing process's cookie value if it is written in a scripting language, i.e. alanguage that isin-
terpreted rather than one compiling to native CPU instructions. In the practical setting of scripts
for web servers, most such programs that are executed by loadable modules are scripting languag-
es, e.g. PERL [41], PHP [6], and Java[3]. While no formal assurances are available, in practice it
is easy to trugt, say, nod_per | to not address random memory.

To seethe power of thisapproach, consider the chronic problem of securely supporting Microsoft’s
“Front Page Extensions,” acollection of non-standard HTML tagsthat the server interpretsto pro-
vide more dynamic HTML content. Microsoft providesanod_f p Apache module and collection
of helper programs, but they have apoor security history [36]. Thereisno current practical method
to securely support nod_f p.

SubDomain can solve the nod_f p problem by treating web pages containing “ Front Page Exten-
sions’ tags as sub-components, and assigning each such page to a subdomain. So long as the
nmod_f p module can be trusted not to call thechange _hat () system call, then no errant action
of nod_f p can violate the security policy of the subdomain for the page it isinterpreting.



Copyright (C) 2000 WireX Communications, I nc.

text p
(1 et ¢/ subdonai n. d/ * ar ser

sysct| () | datastructures

Kernd
File access |rN_oana_I - 7| r——¥—— Acoet
requests accesscontrols —# SubDomain |
eg. open() j T~ ~° | Module ==
read() Reject te - .

Figure4 SubDomain Implementation

3.3 SubDomain Implementation

The basic architecture of SubDomain is shown in Figure 4. The SubDomain policy engine isim-
plemented as a Linux [27] loadable kernel module. Following the usual UNIX permissions check-
ing, therelevant systemcalls (open() ,exec(),read(), etc.) are modified to check if the call-
ing processisaconfined process. If so, therequest isreferred to the SubDomain module for further
inspection. The SubDomain module then either returns normally (if the request is permitted) or re-
turns an EPERM error (if the request is denied).

Once loaded, the SubDomain module disables module unloading to prevent tampering with the
SubDomain policy engine. A user-level parser reads subdomain profiles from / et ¢/ subdo-

mai n. d/ * to convert the textual representation of profilesinto kernel data structures, and inserts
the updated profilesinto the kernel viaasysct | () interface. By convention, the/ et ¢/ sub-

domai n. d/ f oo file would confine the f 00 program, but as shown in Section 3.1, the actual
name of the confined programisin the file, so confining multiple components with asinglefile is
possible. Only root processes can access this kernel interface, and SubDomain-confined programs
may not accessthe profile interface. In future work we will add further authentication requirements
to the kernel’s profile interface.

3.4 SubDomain Parsimony

SubDomain is simpler than competing least privilege mechanisms described in Section 6 in both
implementation and usage. With regard to implementation, the SubDomain module and kernel
patches amount to 4500 lines of C code, and the non-kernel parser is825 lines. In contrast, the DTE
kernel enhancement [7, 8] isover 40,000 lines of code. The relatively simple semantics of SubDo-
main enable a smaller implementation. “Smaller” isimportant for security systems, where correct-
nessis critical, because bugs are approximately liner in code size.

SubDomain’s usageis simpler than its competitorsinthat it is easier to devise and inspect SubDo-
main confinement profile than in other systems, which we elaborate on in Section 4.

4 SubDomain Compatibility

Wetest the compatibility of SubDomain by putting it to work confining avariety of software com-
ponents common to Internet servers, both large and small. SubDomain can confine binary-only



Copyright (C) 2000 WireX Communications, I nc.

programs, so long as there is no need for sub-process confinement. If sub-process confinement is
required, then the program source needs to be edited and re-compiled to insert appropriate calls to
change_hat () (see Section 3.3).

Like the “synthetic user” approach in Section 2.1.1, SubDomain confinement requires administra-
tor intervention. However, SubDomain confinement is easier for the administrator in the following
ways:

Ease of Application: A SubDomain profile does not interfere with any other aspects of the system
except the SubDomain mechanism. Thusit is easy to install a Subdomain profile along with the
confined program. In particular, because the SubDomain profile is independent of the system
the programisbeing installed on, the profile can beincluded with the program being distributed.
In contrast, it is difficult to include a synthetic user in conventional program packages (e.g. tar
balls or RPM packages). 1

Ease of Inspection: It is easy for the administrator to inspect a SubDomain specification to deter-
mine the precise aspects of the systemthat are exposed to that program. In contrast, the exposure
entailed by a synthetic user is non-obvious: the administrator must consider all filesthat are ac-
cessible to “anybody,” which isanon-trivial exercise on non-trivial file systems.

The Kernel Wrapper approach [23] (see Section 6.5) provides for confinement scripts that are
full Turing-equivalent programs. While this provides extensive flexibility, it also meansthat the
completeness and safety of an inserted kernel wrapper is not amenable to automatic analysis. In
contrast, SubDomain profiles are easy to inspect to determine the security implications of up-
dating a SubDomain profile. Furthermore, it isstrictly safeto install a SubDomain profile where
none existed before, because SubDomain strictly limits program privileges.

These factors have important implications for software distribution. Because SubDomain confine-
ment profiles are system independent and guaranteed to be safe to install, it becomes feasible to
package SubDomain confinement with the programitself. Thus an end user can consider installing
a new program on a server appliance, and because of the SubDomain confinement information
packaged with the program, the user can understand the security implications of installing that pro-
gram. In future work, we plan to develop future tools that will assist the administrator in determin-
ing the security implications of a set of SubDomain confinements

Which programs need to be confined with SubDomain depends on the convenience and security
needs of the host system, and thus is an adjustable policy. The administrator can specify which of
the following classes of programs must be confined with SubDomain before they are allowed to
execute at all:

All Programs: All programsthat execute on the host must be associated with a SubDomain, either
explicitly, or inherited from a SubDomained parent program. This mode is suitable for bastion
hosts.

All Listed User-IDs: All programs running under one of the user-1Ds specified by the administra-
tor must be associated with a SubDomain. For instance, the httpd user-1D runs many programs
on behalf of the web server, and SubDomain confinement ensures that these programs will not

1.Notethat bundling synthetic user IDsis exactly the approach taken by qmai | [11], which resultsin excel-
lent security for gmai | , but also imposes substantial packaging difficulties that have hampered qrai | 's
spread.



Copyright (C) 2000 WireX Communications, I nc.

affect other parts of the system. Thismode is suitable for confining apotentially vulnerable col-
lection of services on a system that also hosts critical data.

All r oot Programs: All programsrunning with areal or effective user-ID of “r oot .” Thismode
allows a SubDomain profile to be used to achieve the classic goal of breaking up root’ s all-too-
powerful privileges. The (defunct) POSIX 1.e “capabilities” model subdivided root’s powers
into a static set of 32 separate groups of “capabilities’, and individual programs could assume
part of root’ s powers by flipping on one or more of these sets of capabilities. SubDomain allows
arbitrary setsof privilegesto be grouped together, rather than accepting the groupings specified
by POSIX 1.e.

Only Specified Programs. Only the programsthat have a SubDomain specified are thus confined,
i.e. “ default alow.” This mode assumes that all programs on the host are adequately secured
except for the programs being SubDomained. While not especially secure, this mode is conve-
nient, e.g. for use on a client workstation to run a suspect program recently downloaded from
the Internet.

The procedure for confining a program isto start with a null subdomain specification, run the ap-
plication, observe the system log for complaints about attempts to access files outside the subdo-
main, and then add those files to the subdomain specification. This procedure is presently manual,
because due consideration is required for two stages in this procedure:

Running the application: The application needs to be run under all of the “kinds’ of input that it
IS expected to experience in a production environment, i.e. a comprehensive test suite. Deter-
mining these inputs requires some knowledge of the application to ensure complete coverage.
Failure to provide complete coverage resultsin a subdomain that istoo “tight” , and the applica-
tion will occasionally fail to access resources that it needs.

Granting theprivilege: We are confining the application precisely because we do not trust it, and
therefore we cannot automatically assume that every file the application tries to access under
test isalegitimate file for the program to access. The file should be included in the subdomain
only after due consideration of the security implications.

For applications where source code is available, predicting the set of required resources should be
feasible. If anticipating the set of filesan application needsto accessistruly difficult, thenit isquite
likely that the application represents a significant security threat, and should not be installed on
hosts requiring security.

For applications where source code is not available, a run-time testing methodology must be used
to experimentally identify all of the file resources that a program may try to access. To facilitate
this, we use the dep program that we developed for the InDependence project [16] (funded by a
student grant from USENIX). Thisprogramusesst r ace() to monitor the execution of a subject
program, and amassesalist of all thefilesaccessed. dep’suseof st r ace() imposesheavier per-
formance and compatibility overhead than SubDomain, but is none the less sufficient for exploring
the file system domain of many programs. To further ease use, dep accumulates files accessed
across multiple runs, so that alarge test suite can be applied, and then the list of files accessed in-
spected once at the end of testing.

An example subdomain profile is shown in Figure 5, providing al of the resources needed to run
the wwwcount CGI program (a popular web page hit counter program). Note the use of simple

— 11—



Copyright (C) 2000 WireX Communications, I nc.

/ home/ htt pd/ cgi - bi n/ Count . cgi {
/etc/ld.so.cache

/1ibllib*

/1ib/ld-1inux.so.2

/ etc/ nsswitch. conf

/ et ¢/ wwcount er . conf

/etc/localtine

[var /| og/ htt pd/ wwcount / wwecount _| og
/var/lib/wwcount/*
/var/lib/wwcount/datal*

}

w,

_ =S =S = = = = = =

w,
Figure5 Subdomain for wwmecount CGI script

globbing to reduce the size of the subdomain specification when accessto an entire directory isre-
quired. Figure 6 shows amore elaborate profile for the Apache web server itself, under aparticular
configuration. A list of some of the programsthat we have confined and tested, along with the size
of their subdomains, are listed inTable 1.

5 SubDomain Performance

Herewe present avariety of SubDomain performance measurements. Section 5.1 describes our mi-
crobenchmarks on mediated system calls, and Section 5.2 describes our macrobenchmarks on a
confined PERL script interpreted by the nod_per | Apache module.

/usr/1ocal / apache/ bin/ httpd {
/

/ dev/ nul

/ dev/ urandom

[ etc/ group

/etc/hosts

/ etc/ host. conf
/etc/ld.so.cache
/etc/localtinme

/etc/ nsswitch. conf

/ et c/ passwd

/etc/resol v. conf

[ hone/ ht t pd/ perl/*

[1ibl*

[ usr
/fusr/lib/gconv/|lS0B859-1. so
/usr/lib/gconv/gconv-nodul es
[fusr/lib/perl5/5.00503/*
fusr/lib/perl5/site_perl/5.005/i386-1inux/*
/usr/loca

/usr/ | ocal /[ apache

/usr/ | ocal / apache/ conf/*
/usr/ | ocal / apache/ ht docs/ *
/usr/ | ocal / apache/ | ogs*
/usr/share/l ocal e/en_US/*
/usr/share/local e/l ocal e.alias

}

—1—1§—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1

Figure6 Subdomain for Apache Web Server



Copyright (C) 2000 WireX Communications, I nc.

Table 1: SubDomain-confined Programs

Program Size of Subdomain
Simple bash shell script 31 files
PHF CGI program 14 files
CGI Mall program 7 files
ht sear ch CGI program 11 files
wwweount CGI program 10 files
Apache web server 33 files
| pd 16 files
I pg 10 files
| pc 11 files
Post f i x Mail Delivery Agent 15 files
Post f i x-script helper program 65 files

5.1 Microbenchmarks

Here we use the usual benchmarking technique to measure affected system calls by crafting pro-
gramsthat issue each system call 10,000 times, run the programs several times, discard thefirst run
to avoid cold cache effects, and average the remainder. All tests were performed on a dual-proces-
sor Pentium 111 700 MHz, with 256 MB of RAM. Table 2 summarizes these results. We include
measurement of the get pid() system cal as a baseline for comparison against the
change_hat () systemcall, asget pi d() iscommonly regarded asthe simplest system call.

Table 2: SubDomain Microbenchmarksin microseconds

System Call Standard Cost | SubDomain Cost | % Overhead
fork() 295 295 0%
exec() 1387 1487 7%
open() 3.71 5.39 45%
get _pid() vs.change_hat () 181 4.70 159%

As expected, he magjor overhead appears in the open() , exec() and change _hat () system
calls, where SubDomain is checking the action against the subdomain specification for the con-
fined process.

5.2 Macrobenchmarks

Our macrobenchmark is SubDomain confinement of a PERL script to be executed via the
mod_perl Apache module, thus exercising SubDomain’s capability to confine active content
scripts. To exercisetheweb server’ s cache, wereplicated the PERL script 1000 times, and used the
Webstone performance benchmark to measure the overhead cost of PERL scripted web pages pro-
tected with SubDomain vs. without protection. The PERL script itself reads two files with some
busy-work in between, smulating a script that fetchesa*® container” template fromonefile, HTML

— 13—



Copyright (C) 2000 WireX Communications, I nc.

content from another file, and does some interim processing to merge the two, e.g. compute a hit
counter. The SubDomain profile for this script is shown in Figure 7.

The test environment used the same dual-processor Pentium 11 700 MHz server with 256 MB of
RAM, and a private network (crossover cable) via 100 Mbit ethernet.

The test results are shown in Table 3, measured for 5 to 10 concurrent client connections. Tests
were run twice, and the results averaged. For all cases, the SubDomain overhead is between 1%
and 2%, i.e. in the noise range.

Table 3: SubDomain M acrobenchmarkswith WebStone

Test # of Connection | Avg.Response | Avg. Client
Clients Rate Time (ms) Throughput
Std. 5 75.97 66.5 26.29
SubDomain 5 75.19 66.5 26.02
% Overhead 1% 0% 1%
Std. 6 78.14 77 27.04
SubDomain 6 76.56 78 26.49
% Overhead 2% 1.3% 2%
Std. 7 78.38 89 27.13
SubDomain 7 77.24 90.5 26.73
% Overhead 1.45% 1.7% 1.5%
Std. 8 78.26 102 27.08
SubDomain 8 76.71 104 26.54
% Overhead 2% 2% 2%
Std. 9 78.24 115 27.08
SubDomain 9 77.02 116.5 26.66
% Overhead 1.6% 1.3% 1.6%
Std. 10 78.43 127 27.15
SubDomain 10 77.07 129.5 26.67
% Overhead 1.7% 2% 1.7%

/perl/0/cgitest-001.cgi {
fusr/lib/perl5/site_perl/5.005/i386-1inux/Apache/ Registry.pm
/etc/localtinme

{fusr/lib/perl5/5.00503/*

/[ home/ ht t pd/ perl/0/ cgitest-001. cqi

/home/ ht t pd/ perl/0/cgitenpl at e-001. ht m

[/ home/ ht t pd/ per |/ 0/ cgi dat a- 001

/{var/log/httpd/*

} Figure7 Test PERL Script’s SubDomain Profile

E_‘_‘_‘_‘_‘_‘

— 14—



Copyright (C) 2000 WireX Communications, I nc.

6 Related Work

Here we describe work that, similar to SubDomain, specifically attacks the problem of confining
suspect programs. Despite the age of the notion of least privilege [33], much of this work has
emerged relatively recently. It is our conjecture that thisis aresult of a shift in emphasis from de-
fending secrecy (the dominant concern for military organizations) to defending integrity (the dom-
inant concern for Internet-connected businesses) and the emergence of the notion of survivability
[35]. Thislist of related work is necessarily partial, as the total body of related work is very large.

6.1 TRON

The TRON system [10] is a kernel enhancement for ULTRIX that can confine a program’ s execu-
tionto aprotection domain consisting of afinite set of capabilitiesin the form of file names. TRON
addsthe t ron_f or k() system call, which functions exactly like the classic f or k() system
call, except that it specifies the protection domain as an extra argument. TRON is semantically
most similar to SubDomain: the protection domains are the same (sets of files) and are similarly
applied to host programs, orthogonal to user privileges. The major differences are:

* TRON isdiscretionary, while SubDomain is mandatory. TRON provides user commandsto run
programs in a confined domain, while SubDomain always runs a specified program in a con-
fined domain. Thus in the usual DAC vs. MAC trade-off, TRON is more convenient for indi-
vidual users, while SubDomain is more convenient for securing entire systems, e.g. server ap-
pliances.

* TRON'sfinest granularity isthe ULTRIX process; it cannot confine loadable modules (see Sec-
tion 3.2).

6.2 Janus

Janus[25] isauser-level mechanismfor confining programsto a specific set of resources. Intended
to confine*“ helper” applicationsrun fromwithin aWeb browser, Janususesthept r ace() system
call and amonitoring process to mediate all system calls made by the helper application. If the ac-
tion proposed by the helper application violates a policy set by the user, then the monitoring pro-
cessrejectsthe request. This approach requires four system callsto be executed to effect one con-
fined system call.

6.3 Java 2 Security

The Java 2 security model [4] allowsthe JVM to be configured to assign particular capabilitiesto
designated Java classes, similar to the SubDomain notion of assigning file system capabilities to
programs. This is an enrichment over the original Java security model [26] which assigned one
fixed set of capahilitiesto remotely-loaded applets (almost nothing), and another fixed set of capa-
bilities to locally-loaded applets (almost everything).

The Java 2 security mechanismis notable asthe only system other than SubDomain capable of con-
fining sub-process components, in that Java classes are typically smaller than the host OS process-
es. Naturally, the Java 2 security model does not apply to non-Java native executables.

— 15—



Copyright (C) 2000 WireX Communications, I nc.

6.4 chr oot Jail

Thechr oot () system call? makesthe argument directory be the effective root directory, i.e. “/”
for the invoking process. The point of this operation isthat the file system domain for the affected
process is now limited to the contents of the argument directory. Any files that the application
needs to access must be placed inside the chr oot directory, or the access will fail.

The chr oot technique is a popular form of confinement, in large part because standard kernels
(e.g. Linux) support it. However, chr oot hasdefectsin all three of the dimensions a security en-
hancement should address:

Security: chr oot jailsareresistant to oblivious attemptsto escapethejalil, i.e. attemptsto access
filesthat are not accessible within the jail. However, if the attacker can execute their own code
within the chr oot jall, it is fairly easy to break the jail and access outside files. Thus jailed
programs generally cannot be trusted with strong privileges, i.e. it is insecure to depend on
chr oot to confinear oot process.

Compatibility: Each chr oot ’d program must have the necessary components of the file system
replicated withinitsjail, whichis problematic if the program requires accessto alarge, complex
set of files, i.e. shell scripts need al invoked programs replicated into the chr oot jail. Thus
setting up achr oot jail can be alot of tedious, complex work. The chr oot technique also
breaks programs that need to interact with other parts of the system.

Performance: Becausechr oot jailsrequire duplication of al resources needed by thejailed pro-
gram (soft or hard links could be used as escape routes) they consume excessive disk space and
file system buffer cache space.

6.5 Type Enforcement

Thetype enforcement work [13, 7, 8] has recently been extended to provide better support for pro-
gram confinement. Kernel hypervisors [28] provide a facility for installing small state machines
that intercept kernel system calls and enforce a security policy. Such a facility can be viewed as a
tool that could be used to build a SubDomain-like least privilege system. Fraiser, Badger and Feld-
man provide a similar tool for building security policy enforcement automata [23]. SubDomain
provides the following key advantages over this technique:

Parsimony: SubDomain is much simpler than the TE and DTE implementations; the SubDomain
kernel code is approximately 1/10 the size of the DTE kernel patch. Simplicity is critical in se-
curity systems.

Safety: The DTE Wrapper system [23] allows code to beinserted into the operating systemto per-
form mediation. While thisis a powerful technique, it is also dangerous: malicious DTE wrap-
per code could just as easily be inserted. In contrast, SubDomain profiles are easy to inspect to
determine the security implications of updating a SubDomain profile. Furthermore, it isstrictly
safeto install a SubDomain profile where none existed before, because SubDomain strictly lim-
its program privileges.3

2“man chroot” onmost UNIX Systems
3.This observation due to Blaine Burnham.



Copyright (C) 2000 WireX Communications, I nc.

6.6 Application-Specific M echanisms

Various application environments provide their own least privilege-like mechanisms. For instance,
the PERL interpreter includes a facility known as “taint”, in which input provided to the PERL
script cannot be used to formulate an action (i.e. syst en() operation) unless it has been “ade-
quately” inspected by the PERL script [41]. PERL aso includes a*“safe PERL” facility, wherein
the programmer can specify a set of PERL operatorsthat the script may not use.

Another application-specific least privilege mechanism is the notion of “ wrappers.” For example,
CGI Wrappers[31] causes a CGlI script to be run with the user-1D of the script owner, rather than
the user-1D of the web server. Combined with the synthetic user-1D notion described in Section
2.1.1, CGI Wrappers can construct aleast privilege environment for CGI scripts.

6.7 PACLs. Program-based Access Control Lists

We believe PACLs [42] to be the first instance of an access control system based on the program
performing the operation. The PACL systemisthe exact dual of the SubDomain notion: files have
an access control list that enumerates programs that are permitted to operate on that file. A smu-
lated PACL system was built and evaluated, but an actual PACL system was never finished.

7 Status & Availability

The implementation is not complete with respect to the description in this paper.

» The absolute and relative sub-domains described in Section 3.1is not complete: child processes
either inherit the parent’s profile, or use their own profile if one is specified.

» The multiple modes of requiring SubDomain confinement described in Section 4 is only par-
tially implemented. The implementation currently supports* paranoid’” mode where all process-
es must have SubDomain confinement, and “ open” mode, where only the programs that are
specified are confined by SubDomain.

SubDomain isimplemented for Linux, and isavailable fromht t p: / /i mruni x. or g . Theker-
nel enhancement portion is licensed under the GPL, and the non-kernel portions are proprietary to
WireX but available for free for non-commercial use.

8 Conclusions

Vulnerable software is a major security problem, mandating constant system administrator atten-
tion to keep systems up to date with vendor-supplied security patches. This is especially problem-
atic for complex Internet servers, which are required to provide extensive servicesto anyone onthe
Internet. Some form of confinement mechanism to approximate least privilege is the generic solu-
tion, but often imposes more costs than administrators deploying in “internet time” can bear. Our
SubDomain confinement mechanism advances over previous confinement work, simplifying both
implementation and administration overheads by confining programs instead of users.

This approach enables SubDomain confinement to be packaged with programs, in contrast with
confinement mechanismsthat are bound to the system. SubDomain also providesfine-grained pro-
tection, confining software componentsfiner than the host OS process, providing the unique capa-
bility to protect potentially vulnerable server modules such as Microsoft’s Front Page Extensions

— 17—



Copyright (C) 2000 WireX Communications, I nc.

to the Apache web server. We have implemented and tested the system, showing that it provides
all three essential properties of a security enhancement: enhanced security, software compatibility,
and preserved performance.

References

[1]
[2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

Bowen Alpern and Fred B. Schneider. Defining Liveness. Information Processing Letters,
21(4):181-185, 1985.

Edward Amoroso. Fundamentals of Computer Security Technology. Prentice Hall,
Englewood Cliffs, NJ, 1994.

Anonymous. The Java Web Server Architecture Overview, 1997. http://
www. j avasoft. conl product s/ ava-server/ docunent ati on/
webserver1. 1/.

Anonymous. JDK 1.2 Security. http://java. sun.com products/jdk/ 1.2/
docs/ gui de/ security/index. ht m , March 1998.

Assorted. NCSA  HTTPd  Tutoria: Server Side Includes. http://
hoohoo. ncsa. ui uc. edu/ docs/tutorial s/includes. htni.

Assorted. PHP Hypertext Processor. ht t p: / / php3. org/ .

L. Badger, D.F. Sterne, and et a. Practical Domain and Type Enforcement for UNIX. In
Proceedings of the |EEE Symposium on Security and Privacy, Oakland, CA, May 1995.

Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and SheilaA.
Haghighat. A Domain and Type Enforcement UNIX Prototype. In Proceedings of the
USENIX Security Conference, 1995.

Brian Behlendorf, Roy T. Fielding, Rob Hartill, David Robinson, Cliff Skolnick, Randy
Terbush, Robert S. Thau, and Andrew Wilson. Apache HTTP Server Project. htt p: //
wwmw. apache. org.

Andrew Berman, Virgil Bourassa, and Erik Selberg. TRON: Process-Specific File Protection
for the UNIX Operating System. In Proceedings of the 1995 Winter USENIX Conference.
USENIX Association, 1995.

D. J. Bernstein. gmail, 1990. htt p: //cr.yp.to/ gmai | . ht m .

M. Bishop and M. Digler. Checking for Race Conditions in File Accesses. Computing
Systems, 9(2):131-152, Spring 1996. Also avalable a http://
ol ynpus. cs. ucdavi s. edu/ bi shop/scriv/index. htn .

W.E. Bobert and R.Y. Kain. A Practical Alternative to Hierarchical Integrity Policies. In
Proceedings of the 8th National Computer Security Conference, Gaithersburg, MD, 1985.

CERT. Advisory CA-96.06: Vulnerability in NCSA/Apache CGI Example Code. ft p: //
info.cert.org/ pub/cert_advi sori es/ CA-96. 06. cgi _exanpl e_code
September 1996.

CERT. Advisory CA-98.05: Multiple Vulnerabilities in  BIND. ftp://
i nfo.cert.org/pub/cert_advi sori es/ CA-98. 05. bi nd_probl ens, May
1998.



[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

Copyright (C) 2000 WireX Communications, I nc.

Crispin Cowan, Ryan Finnin Day, and Hao Zhao. InDependence: Automating the Discovery
of Application Dependencies. http://ww. cse. ogi . edu/ DI SC/ proj ect s/
i ndependence, 1997.

Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve Besttie, Aaron
Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In 7th USENIX Security Conference, pages 63—77,
San Antonio, TX, January 1998.

Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. Buffer
Overflows. Attacks and Defenses for the Vulnerability of the Decade. In DARPA
I nformation Survivability Conference and Expo (DI SCEX), January 2000. Also presented as
aninvited talk at SANS 2000, March 23-26, 2000, Orlando, FL,ht t p: / / schaf er cor p-
bal | st on. coni di scex.

Michele Crabb. Curmudgeon’s Executive Summary. In Michele Crabb, editor, The SANS
Network Security Digest. SANS, 1997. Contributing Editors: Matt Bishop, Gene Spafford,
Steve Bellovin, Gene Schultz, Rob Kolstad, Marcus Ranum, Dorothy Denning, Dan Geer,
Peter Neumann, Peter Galvin, David Harley, Jean Chouanard.

Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From HotJava to
Netscape and Beyond. In Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, 1996. http://ww. cs. pri nceton. edu/ si p/ pub/
secure96. htm .

eEye. IIS Remote Hole. http://ww. eeye. coni dat abase/ advi sori es/
ad06081999/ ad06081999. ht m , June 1999.

David F. Ferraiolo and Richard Kuhn. Role-Based Access Control. In Proceedings of the
15th National Computer Security Conference, Baltimore, MD, October 1992.

Tim Fraser, Lee Badger, and Mark Feldman. Hardening COTS Software with Generic
Software Wrappers. In Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1999.

Neal Glew and Greg Morrisett. Type-Safe Linking and Modular Assembly Language. In
Twenty-Sxth  ACM  SIGPLAN-SGACT Symposium on Principles of Programming
Languages, pages 250-261, San Antonio, TX, January 1999. http://
wwmwv. cs. cornel | . edu/tal c/ papers. htnl.

lan Goldberg, David Wagner, Randi Thomas, and Eric Brewer. A Secure Environment for
Untrusted Helper Applications. In 6th USENIX Security Conference, San Jose, CA, July
1996.

James Godling and Henry McGilton. The Java Language Environment: A White Paper.
http://ww. j avasoft. conf docs/ white/l angenv/, May 1996.

J.A. McLean. A General Theory of the Composition for Trace Sets Closed Under Selective
Interleaving Functions. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 79-93, Oakland, CA, May 1994.

Terrance Mitchem, Raymond Lu, and Richard O’ Brien. Using Kernel Hypervisorsto Secure
Applications. In Proceedings of the Annual Computer Security Application Conference,
December 1997.



[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

Copyright (C) 2000 WireX Communications, I nc.

“Mudge’. How to Write Buffer Overflows. http://1 Opht. conif advi sori es/
buf ero. ht m , 1997.

George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-Time Checking. In
Proceedings of the USENIX 2nd Symposium on OS Design and Implementation (OSDI’ 96),
1996. Also available at http://ww. useni x. org/ publications/library/
proceedi ngs/ osdi 96/ necul a. ht m .

Nathan Neulinger. CGIWrap: User CGIl Access, 1997.ht t p: / / www. uni xt ool s. or g/
cgi wrap/.

“ Aleph One’. Smashing The Stack For Fun And Profit. Phrack, 7(49), November 1996.

Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer
Systems. Proceedings of the |EEE, 63(9), November 1975.

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role Based Access Control
Models. IEEE Computer, pages 38-47, February 1996.

Howie Shrobe. ARPATech '96 Information Survivability Briefing. http://
wwwv. dar pa. m | /ito/ ARPATech96_Briefs/survivability/
survive_brief.htn, May 1996.

Marc Slemko. Microsoft FrontPage 98 Security Hell. ht t p: / / www. wor | dgat e. com
mar cs/ f p/ , October 1997.

Robert E. Strom and ShaulaAlexander Yemini. Typestate: A Programming Language
Concept for Enhancing Software Reliability. IEEE Transactions on Software Engineering,
12(1):157-171, January 1986.

Linus Torvaldsand et a. Linux Operating System. ht t p: / / ww. | i nux. or g/ .

United States Department of Defence. Reference Manual for the Ada Programming
Language ANS/MIL-STD-1815A-1983. United States Department of Defence, February
1983.

Robert Wahbe, Steven Lucco, ThomasE. Anderson, and SusanL. Graham. Efficient
Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM Symposium on
Operating System Principles (SOSP’ 93), pages 203—-216, Asheville, NC, December 1993.

Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl. O'Reilly &
Associates, Inc., 2nd edition, 1996.

D.R. Wichers, D.M. Cook, R.A. Olsson, J. Crossley, P. Kerchen, K. Levitt, and R. Lo.
PACL’s: An Access Control List Approach to Anti-viral Security. InProceedings of the 13th
National Computer Security Conference, pages 340-349, Washington, DC, October 1-4
1990.



