
Copyright (C) 2000 WireX Communications, Inc.

— 1 —

SubDomain™ :
Parsimonious Server Security

WireX™ Communications, Inc.
www.wirex.com
www.immunix.org

Crispin Cowan
Steve Beattie
Greg Kroah-Hartman
Calton Pu
Perry Wagle
Virgil Gligor

Abstract

Internet security incidents have shown that while network cryptog-
raphy tools like SSL are valuable to Internet service, the hard prob-
lem is to protect the server itself from attack. The host security
problem is important because attackers know to attack the weakest
link, which is vulnerable servers. The problem is hard because
securing a server requires securing every piece of software on the
server that the attacker can access, which can be a very large set of
software for a sophisticated server. Sophisticated security architec-
tures that protect against this class of problem exist, but because
they are either complex, expensive, or incompatible with existing
application software, most Internet server operators have not cho-
sen to use them.

This paper present SubDomain: an OS extension designed to pro-
vide sufficient security to prevent vulnerability rot in Internet
server platforms, and yet simple enough to minimize the perfor-
mance, administrative, and implementation costs. SubDomain does
this by providing a least privilege mechanism for programs rather
than for users. By orienting itself to programs rather than users,
SubDomain simplifies the security administrator’s task of securing
the server.

This paper describes the problem space of securing Internet servers,
and presents the SubDomain solution to this problem. We describe
the design, implementation, and operation of SubDomain, and pro-
vide working examples and performance metrics for services such
as HTTP, SMTP, POP, and DNS protected with SubDomain.

Copyright (C) 2000 WireX Communications, Inc.

— 2 —

1 Introduction
Common server operating systems such as Linux, Windows, Solaris, etc. are subject to vulnerabil-
ity rot as security vulnerabilities (i.e. implementation bugs) are discovered in the component soft-
ware of these operating systems. For instance, a buffer overflow discovered in the BIND domain
name server [15] allowed remote attackers to gain root privileges on a variety of system platforms,
and a similar vulnerability in Microsoft’s IIS (web server) [21] allows remote attackers to gain ad-
ministrative control of Windows servers. The recommended defense for general purpose servers is
to keep the host system up to date with vendor patches to close these vulnerabilities.

However, many of these systems are being pressed into use as the basis for server appliances: serv-
ers intended for largely unattended operation by unskilled users. But because these operating sys-
tems are subject to vulnerability rot, they need to be frequently upgraded with vendor patches.
While this is an acceptable approach for general purpose servers (where a skilled system adminis-
trator is expected to maintain the system) it is not acceptable to appliance users, who expect a de-
vice with the maintenance factor of a toaster.

The classical security solution to vulnerability rot is the notion of least privilege: the technique of
granting subjects in a system precisely the capabilities they need to perform their function, and no
more [33]. Effective use of least privilege minimizes the potential damage that results when a trust-
ed program is penetrated by minimizing the degree to which the program is trusted.

Security architectures that provide least privilege mechanisms exist, but because they are either
complex, expensive, or incompatible with existing application software, appliance vendors have
not chosen to use them. Existing defenses entail these complexities precisely because they were
designed to handle the generality of a general purpose server, and thus must deal with user least
privilege. This generality complicates the least privilege abstraction, making the enforcement
mechanism more complex to implement and use.

This paper present SubDomain: an OS extension designed to provide sufficient security to prevent
vulnerability rot in server appliances, and yet simplify as much as possible to minimize the perfor-
mance, administrative, and implementation costs. SubDomain does this by providing a least priv-
ilege mechanism for programs rather than for users. The security restrictions complement the sys-
tem’s existing permissions, allowing a program to be secured independent of who may be using
the program. This notion is especially effective on server appliances, and enables program-specific
confinement information to be distributed with the program (see Section 4).

By specifically addressing least privilege for programs, we can provide a mechanism that has a rel-
atively small implementation and simple operation. Small implementations are important for secu-
rity systems to avoid vulnerabilities due to bugs in the enforcement mechanism itself. Simple op-
eration is important for security systems to avoid misconfiguration. Even more so than in most OS
design issues, parsimony is critical to security [33] making SubDomain’s relative simplicity of de-
sign and implementation an important feature.

We present the SubDomain notation for recursively specifying the sub-domain of resources avail-
able to a software component, our implementation of SubDomain as an enhancement to the Linux
kernel, our application of SubDomain confinement to several example applications, performance
metrics on the cost of SubDomain confinement, and our analysis of the security of a system pro-
tected by SubDomain.

Copyright (C) 2000 WireX Communications, Inc.

— 3 —

The challenge of supporting least privilege is to provide a specification system that is expressive
enough to specify privileges that are actually minimal, is convenient enough that administrators
can reasonably specify least privileges, and yet preserves compatibility and performance. While
SubDomain strives for simplicity relative to other least privilege mechanisms, it provides for finer
granularity least privilege in one important regard: SubDomain can confine arbitrary software
components, at a finer granularity than the native OS process, i.e. procedures and modules. This is
especially important for component-based services such as Apache [2] and its loadable modules
(see Section 3.2).

The rest of this paper is organized as follows. Section 2 elaborates on the problem of vulnerable/
buggy software, and describes the abstract solution of least privilege to minimize the potential
damage due to attacks against vulnerable software. Readers familiar with least privilege can skip
ahead to Section 3, which describes the SubDomain security enhancement, and how it advances
over previous least privilege mechanisms by providing finer granularity, and simplifying the prob-
lem of confining suspect programs. Section 4 demonstrates SubDomain’s compatibility by confin-
ing assorted software components, including sub-process modules. Section 5 presents the perfor-
mance costs of SubDomain confinement. Section 6 describes related work specifically addressing
the problem of confining suspect programs. Section 8 presents our conclusions.

2 The Problem: Vulnerable Programs and Least Privilege
Many security vulnerabilities result from bugs in “trusted” programs. A “trusted program” is a pro-
gram that runs with privilege that some attacker would like to have, and the program fails to keep
that trust if there is a bug in the program that allows the attacker to acquire that privilege. Some
examples include:

Buffer Overflows: Many privileged programs contain “buffer overflow” vulnerabilities, a prob-
lem endemic to C programs that provide poor bounds checking on user-supplied input. Buffer
overflows are very common [6, 7] and very dangerous [21, 20], allowing attackers to take con-
trol of programs from an anonymous node on the internet.

Race Conditions: Many privileged programs also contain “race condition” vulnerabilities. Here,
the problem is that careless root privileged processes create files without adequate checking
for the prior existence of the file. The problem is that the attacker can create a symbolic or hard
link in the file system between the time the privileged program checks for existence and the time
it creates the file, with the result that the root program unwittingly uses its authority to corrupt
some other critical file [12].

Special Character Processing: While few root privileged programs are written in shell scripting
languages, many other programs with “interesting” privileges are written as shell scripts, espe-
cially CGI/PERL [41] programs for processing web forms. CGI programs run with the authority
of the web server, and must process arbitrary input from arbitrary users. If the attacker can pro-
vide input (using creative URLs) to a CGI program that yields control to the attacker, then the
attacker can gain control of the web server, e.g. the PHF program (included in early NCSA and
Apache web servers) allowed the attacker to present a URL to the web server that would cause
PHF to start an xterm on the attacker’s display [14].

Note that while “trusted” usually refers to highly privileged processes (e.g. root processes) they
can actually be processes with any privileges that the attacker wants but does not have. The general

Copyright (C) 2000 WireX Communications, Inc.

— 4 —

case is that any program installed on a computer that processes input from potentially hostile users
becomes a potential vulnerability. Eliminating these vulnerabilities requires some form of assur-
ance that the program in question does not contain exploitable bugs, but this kind of assurance is
problematic. Some classes of bugs, e.g. buffer overflow vulnerabilities, can be eliminated through
various compiler techniques [39, 5, 26, 37]. Other forms of vulnerabilities are undetectable at com-
pile time, e.g. race conditions [12] and general logic errors.

The only way to assure the complete absence of a security vulnerability in a program is through
expensive manual verification. In the absence of such verification, one must either suffer the risk
of potential vulnerabilities, or contain the potential damage. Note that the activities we seek to con-
strain are “those that cause damage to the system,” i.e. safety properties [1] with respect to integ-
rity. We are not addressing other security issues, such as information flows [27] that might disclose
secrets. Readers already familiar with least privilege mechanisms can skip to Section 3 for a de-
scription of Subdomain, our contribution to the field.

2.1 The Solution: Least Privilege
The classic solution to the problem of unknown security vulnerabilities is to perform each activity
with the least privilege required to complete that task [33]. While this does not stop exploitation of
these vulnerabilities, it does contain the damage as much as possible. An attacker who gets control
of a least privilege process can, at most, read secrets and corrupt data that the exploited process has
access to, and no more.

The challenge of supporting least privilege is to provide a sufficiently fine-grained mechanism to
specify privileges that are actually minimal, while also preserving compatibility and performance.
It is conceptually simple to divide system privileges into fine-grained units and then attribute the
exact required privileges to a given activity, but the result of such an approach is specification no-
tation that is tedious to maintain (breaking compatibility) and an enforcement mechanism that is
slow (breaking performance).

Practical least privilege therefore involves abstracting the system resources to expedite least priv-
ilege specifications. Matching least privilege abstractions to native OS resources in turn enables
efficient least privilege enforcement. Least privilege is also a useful notion in managing user priv-
ileges, leading many systems to combine least privilege for users and programs into a single mech-
anism, as described in Section 2.1.1.

However, if the problem is bugs in programs that can be accessed by completely untrusted users,
then user-oriented least privilege mechanisms may become awkward or inadequately expressive.
Section 2.1.2 describes some more elegant approaches to using user privilege mechanisms to con-
fine suspect programs. Section 3 discusses SubDomain, our OS security enhancement that partic-
ularly address the problem of least privilege for programs, and Section 6 discusses related work
specifically aimed at program confinement.

2.1.1 Using User Privileges to Confine Programs
Least privilege for users is a classic way of structuring a system, and many operating systems pro-
vide facilities for constraining the privileges of a given user. User-oriented least privilege facilities
can be adapted to confining collection of programs by creating a synthetic user, and then running
the program as that user.

Copyright (C) 2000 WireX Communications, Inc.

— 5 —

The classic example is the UNIX setuid facility: the setuid bit for an executable file indicates that
the program runs with the privilege of the owner of the file instead of the privilege of the invoking
user. Often this is used to create setuid root programs that provide controlled access to pro-
tected resources by expanding the privileges the program runs with to be all of root’s privileges.
To use setuid to confine a program to a smaller set of resources, a new synthetic user can be
created that has those privileges, e.g. nobody. Programs can then be made setuid nobody to
confine their actions to a small set of privileges.

One limitation to this approach is that all user-IDs, even synthetic user-IDs, can access all files on
the system that permit “other” accesses. Another limitation to this approach is that only root can
create new user-IDs. The result is that normal users cannot construct ad hoc “sandboxes” for pro-
grams that they may choose to install and run. Users are then left with their choice of:

• beg the system administrator to create a new user-ID for them,

• do not install software that is not trusted,

• run untrusted software without protection, none of which is very appealing.

So in principle, synthetic user-IDs and the setuid mechanism can support least privilege for pro-
grams, but in practice it forces root to do all the work. Therefore this technique is rarely deployed,
people run un-trustworthy software with much more privilege than is necessary, and suffer the con-
sequent security risks.

2.1.2 Users and Roles
Because synthesizing user-IDs is awkward, the notion of a role emerged. A role is a collection of
related privileges [2]. In 1986, Bobert and Kain introduced the notion of type enforcement: objects
(files) are assigned to types, subjects (processes) are assigned to domains, and tables determine
which domains have access to which types. Badger et al expanded on this notion [7, 8]. In a similar
vein, role-based access control (RBAC) [22, 34] assigns users to roles, and then grants privileges
to the roles.

Similar to the setuid approach described in Section 2.1.1, roles can be pressed into service con-
fining programs to a least privilege set of resources by assuming a specific role just prior to exe-
cuting the program. While using roles to confine programs is more elegant than synthesizing user-
IDs, it is still fundamentally overloading a user-oriented access control mechanism to manage soft-
ware defects. In Section 3, we describe our mechanism to specifically address the problem of vul-
nerable software.

3 SubDomain Security: Recursive Component Confinement
SubDomain is a kernel extension designed specifically to provide least privilege confinement to
suspect programs. SubDomain allows the administrator to specify the domain of activities the pro-
gram can perform by listing the files the program may access, and the operations the program may
perform. SubDomain restrictions complement the native access controls, in that SubDomain never
expands the set of files a program may access, i.e. any file access must pass the native access con-
trols and the SubDomain restrictions before access is granted. Thus SubDomain confinement
makes a program monotonically safer to run.

Copyright (C) 2000 WireX Communications, Inc.

— 6 —

Section 3.1 describes the SubDomain notation and semantics. Section 3.2 explains how SubDo-
main leverages work in safe programming models like proof-carrying code [30] to achieve com-
ponent confinement below the granularity of a native process. Section 3.3 describes the SubDo-
main implementation.

3.1 SubDomain Notation & Semantics
Figure 1 shows a trivial SubDomain specification, in which the foo program is given read access
to the /etc/readme file, write access to the /etc/writeme file, and execute access to the /
usr/bin/bar file. When ever the program foo is run, by any user, it is restricted to access these
specified files with these modes. SubDomain profiles can also grant access to directories through
simple globbing, i.e. the profile in Figure 1 grants the foo program to all files in /mydir.

The x (execute) capability is of particular importance: what restrictions should apply to the child
process? By default, the child process inherits the parent’s SubDomain, preventing the confined
program from “escaping” its confinement by executing an unrestricted child process. However,
sub-components of an application may require different capability sets than the application as a
whole. For instance, games only need strong privileges to initialize video controllers, and mail de-
livery agents only need strong privileges to actually write to a user’s mail box. Thus child programs
can be given different constraints by specifying a relative subdomain, denoted by a x followed by
a + or - followed by a SubDomain specification. For example, Figure 2 shows a SubDomain for
foo that says that when the sub-component bar is run, it can also have write permission to the /
etc/otherwrite file. Conversely, it says that when foo runs the sub-component baz, it may
not write to the /etc/writeme file.

Sub-components may also want a SubDomain that is completely unrelated to the parent domain.
For example, a web server application might need to send some e-mail while processing a web
form, and thus invokes a mail delivery agent whose SubDomain is completely different. We sup-
port this need with absolute subdomains, denoted by a subdomain specification following an x
without a + or a -. Figure 3 shows an example absolute subdomain in which the bar program run
from the foo program has access to a completely different subdomain than the foo program.

When a confined process tries to perform a file operation that is not permitted, two things happen:

Figure 1 Trivial SubDomain

foo {
/etc/readme r ,
/etc/writeme w ,
/usr/bin/bar x ,
/mydir/* r ,
}

foo {
/etc/readme r ,
/etc/writeme w ,
/usr/bin/bar x +{/etc/otherwrite w} ,
/usr/bin/baz x -{/etc/writeme w} ,
}

Figure 2 Relative SubDomain

Copyright (C) 2000 WireX Communications, Inc.

— 7 —

1. The syscall returns with the error EPERM, just as if the attempt had failed due to a standard
UNIX file system permission error.

2. The kernel generates a syslog entry describing the attempted violation. Intrusion detection sys-
tems can thus collect what ever information they want, and act accordingly.

3.2 Sub-process Confinement
Section 6 describes several other systems that provide program-confinement mechanisms. Howev-
er, with the exception of Java [4] the smallest component that they can confine is a native OS pro-
cess. In contrast, SubDomain provides the unique feature of being able to confine components that
are only a portion of an OS process. Historically of little practical interest, the need for sub-process
confinement comes from the rise in popularity of scriptable servers and loadable modules. Let us
expand upon these concepts.

A “scriptable server” is a server program that, from time to time, interprets a script or a program
within itself, i.e. server-side includes [5], PHP web pages [6], Java servlets [3], etc. Such scripts
are legitimately sub-component programs requiring separate confinement. Scriptable servers often
have their own security mechanisms, but in depending on such restrictions, we are depending on
application correctness, which is the dependence we seek to avoid in the first place. We would rath-
er have a confinement mechanism that can be enforced by the operating system so that we do not
depend on the correctness of the server application.

“Loadable modules” or “plug-ins” is the notion of providing a (fairly) fixed API in an application
so that extensions to can be loaded into the application, either at start-time or run-time. “Plug-in”
is the common term for desktop applications (i.e. Netscape Navigator & Shockwave, Microsoft
Word and EndNote) while “module” is the common term for servers (e.g. Apache and mod_perl).

The mod_perl module for Apache provides a perfect example of the sub-process problem. PERL
scripts run at the behest of the Apache web server are normally interpreted by starting a separate
process to run the PERL interpreter, and then interpreting the PERL script in that separate process.
mod_perl loads a PERL interpreter directly into the Apache process to avoid the cost of starting
the PERL interpreter process. While this is good for server throughput, it is bad for security:

• Bugs in mod_perl can crash the Apache web server process.

• Program-confinement mechanisms that only operate on OS processes cannot confine scripts in-
terpreted by mod_perl separate from the Apache web server process.

The SubDomain solution to the “scripting & module” problem is to provide for subdomains for
sub-process components, in cooperation with the enclosing application. The notation for a sub-pro-
cess subdomain is unchanged from that of separate-process subdomains shown in Figure 1 through

foo {
/etc/readme r ,
/etc/writeme w ,
/usr/bin/bar x {

/usr/lib/otherread r ,
/var/opt/otherwrite w ,
} ,

} Figure 3 Absolute SubDomain

Copyright (C) 2000 WireX Communications, Inc.

— 8 —

Figure 3. The effect is to create a variety of “hats” that process can wear, one for each sub-process
component that it calls. The “cooperation” required from the enclosing program is that it should
call the new change_hat() system call before calling the sub-process component.

The requirement to call change_hat() implies that we are once again trusting the application,
which SubDomain is supposed to avoid. However, we are trusting the application code a great deal
less, in that the application only has to make appropriate calls to change_hat(), which is much
simpler than constructing and enforcing an effective “sandbox” environment [9]. Successfully call-
ing change_hat() with the name of a sub-component before calling the sub-component seems
easy enough to do correctly.

In addition to the requirement that enclosing application correctly calls change_hat(), we also
require that the sub-component does not call change_hat() to escape to a more liberal subdo-
main. Here, we employ a cookie argument to change_hat() to prevent the confined module from
escaping. The containing process initially calls change_hat() with a particular cookie value,
and further change_hat() calls that do not provide a matching cookie argument are treated as
security violations.

Thus for the containing process to prevent sub-component from escaping from the
change_hat() SubDomain, it need only provide a cookie value that the contained sub-compo-
nent cannot easily guess. We recommend fetching a word from /dev/random, but any reason-
able source of entropy can be used.

The security of this method depends on the sub-component not being able to read the parent pro-
cess’s cookie value. Here, SubDomain can leverage the power of language-based security protec-
tion systems such as proof-carrying code [30], strong type checking [39, 26, 37], and other lan-
guage-based protection schemes [24, 40]. Such methods can, in principle, prove that the sub-com-
ponent will not invoke the change_hat() system call.

Programing language techniques provide powerful protection, but also impose significant practical
constraints, not the least of which is that the sub-component needs to be written in a particular lan-
guage. In practice, we can still get reasonable assurance that the sub-component cannot read the
containing process’s cookie value if it is written in a scripting language, i.e. a language that is in-
terpreted rather than one compiling to native CPU instructions. In the practical setting of scripts
for web servers, most such programs that are executed by loadable modules are scripting languag-
es, e.g. PERL [41], PHP [6], and Java [3]. While no formal assurances are available, in practice it
is easy to trust, say, mod_perl to not address random memory.

To see the power of this approach, consider the chronic problem of securely supporting Microsoft’s
“Front Page Extensions,” a collection of non-standard HTML tags that the server interprets to pro-
vide more dynamic HTML content. Microsoft provides a mod_fp Apache module and collection
of helper programs, but they have a poor security history [36]. There is no current practical method
to securely support mod_fp.

SubDomain can solve the mod_fp problem by treating web pages containing “Front Page Exten-
sions” tags as sub-components, and assigning each such page to a subdomain. So long as the
mod_fp module can be trusted not to call the change_hat() system call, then no errant action
of mod_fp can violate the security policy of the subdomain for the page it is interpreting.

Copyright (C) 2000 WireX Communications, Inc.

— 9 —

3.3 SubDomain Implementation
The basic architecture of SubDomain is shown in Figure 4. The SubDomain policy engine is im-
plemented as a Linux [27] loadable kernel module. Following the usual UNIX permissions check-
ing, the relevant system calls (open(), exec(), read(), etc.) are modified to check if the call-
ing process is a confined process. If so, the request is referred to the SubDomain module for further
inspection. The SubDomain module then either returns normally (if the request is permitted) or re-
turns an EPERM error (if the request is denied).

Once loaded, the SubDomain module disables module unloading to prevent tampering with the
SubDomain policy engine. A user-level parser reads subdomain profiles from /etc/subdo-
main.d/* to convert the textual representation of profiles into kernel data structures, and inserts
the updated profiles into the kernel via a sysctl() interface. By convention, the /etc/sub-
domain.d/foo file would confine the foo program, but as shown in Section 3.1, the actual
name of the confined program is in the file, so confining multiple components with a single file is
possible. Only root processes can access this kernel interface, and SubDomain-confined programs
may not access the profile interface. In future work we will add further authentication requirements
to the kernel’s profile interface.

3.4 SubDomain Parsimony
SubDomain is simpler than competing least privilege mechanisms described in Section 6 in both
implementation and usage. With regard to implementation, the SubDomain module and kernel
patches amount to 4500 lines of C code, and the non-kernel parser is 825 lines. In contrast, the DTE
kernel enhancement [7, 8] is over 40,000 lines of code. The relatively simple semantics of SubDo-
main enable a smaller implementation. “Smaller” is important for security systems, where correct-
ness is critical, because bugs are approximately liner in code size.

SubDomain’s usage is simpler than its competitors in that it is easier to devise and inspect SubDo-
main confinement profile than in other systems, which we elaborate on in Section 4.

4 SubDomain Compatibility
We test the compatibility of SubDomain by putting it to work confining a variety of software com-
ponents common to Internet servers, both large and small. SubDomain can confine binary-only

/etc/subdomain.d/* Parsertext

Kernel

SubDomain
Module

data structuressysctl()

File access
requests
e.g. open(),
read()

Normal
access controls

Reject

Accept

Figure 4 SubDomain Implementation

Copyright (C) 2000 WireX Communications, Inc.

— 10 —

programs, so long as there is no need for sub-process confinement. If sub-process confinement is
required, then the program source needs to be edited and re-compiled to insert appropriate calls to
change_hat() (see Section 3.3).

Like the “synthetic user” approach in Section 2.1.1, SubDomain confinement requires administra-
tor intervention. However, SubDomain confinement is easier for the administrator in the following
ways:

Ease of Application: A SubDomain profile does not interfere with any other aspects of the system
except the SubDomain mechanism. Thus it is easy to install a Subdomain profile along with the
confined program. In particular, because the SubDomain profile is independent of the system
the program is being installed on, the profile can be included with the program being distributed.
In contrast, it is difficult to include a synthetic user in conventional program packages (e.g. tar
balls or RPM packages). 1

Ease of Inspection: It is easy for the administrator to inspect a SubDomain specification to deter-
mine the precise aspects of the system that are exposed to that program. In contrast, the exposure
entailed by a synthetic user is non-obvious: the administrator must consider all files that are ac-
cessible to “anybody,” which is a non-trivial exercise on non-trivial file systems.

The Kernel Wrapper approach [23] (see Section 6.5) provides for confinement scripts that are
full Turing-equivalent programs. While this provides extensive flexibility, it also means that the
completeness and safety of an inserted kernel wrapper is not amenable to automatic analysis. In
contrast, SubDomain profiles are easy to inspect to determine the security implications of up-
dating a SubDomain profile. Furthermore, it is strictly safe to install a SubDomain profile where
none existed before, because SubDomain strictly limits program privileges.

These factors have important implications for software distribution. Because SubDomain confine-
ment profiles are system independent and guaranteed to be safe to install, it becomes feasible to
package SubDomain confinement with the program itself. Thus an end user can consider installing
a new program on a server appliance, and because of the SubDomain confinement information
packaged with the program, the user can understand the security implications of installing that pro-
gram. In future work, we plan to develop future tools that will assist the administrator in determin-
ing the security implications of a set of SubDomain confinements

Which programs need to be confined with SubDomain depends on the convenience and security
needs of the host system, and thus is an adjustable policy. The administrator can specify which of
the following classes of programs must be confined with SubDomain before they are allowed to
execute at all:

All Programs: All programs that execute on the host must be associated with a SubDomain, either
explicitly, or inherited from a SubDomained parent program. This mode is suitable for bastion
hosts.

All Listed User-IDs: All programs running under one of the user-IDs specified by the administra-
tor must be associated with a SubDomain. For instance, the httpd user-ID runs many programs
on behalf of the web server, and SubDomain confinement ensures that these programs will not

1.Note that bundling synthetic user IDs is exactly the approach taken by qmail [11], which results in excel-
lent security for qmail, but also imposes substantial packaging difficulties that have hampered qmail’s
spread.

Copyright (C) 2000 WireX Communications, Inc.

— 11 —

affect other parts of the system. This mode is suitable for confining a potentially vulnerable col-
lection of services on a system that also hosts critical data.

All root Programs: All programs running with a real or effective user-ID of “root.” This mode
allows a SubDomain profile to be used to achieve the classic goal of breaking up root’s all-too-
powerful privileges. The (defunct) POSIX 1.e “capabilities” model subdivided root’s powers
into a static set of 32 separate groups of “capabilities”, and individual programs could assume
part of root’s powers by flipping on one or more of these sets of capabilities. SubDomain allows
arbitrary sets of privileges to be grouped together, rather than accepting the groupings specified
by POSIX 1.e.

Only Specified Programs: Only the programs that have a SubDomain specified are thus confined,
i.e. “default allow.” This mode assumes that all programs on the host are adequately secured
except for the programs being SubDomained. While not especially secure, this mode is conve-
nient, e.g. for use on a client workstation to run a suspect program recently downloaded from
the Internet.

The procedure for confining a program is to start with a null subdomain specification, run the ap-
plication, observe the system log for complaints about attempts to access files outside the subdo-
main, and then add those files to the subdomain specification. This procedure is presently manual,
because due consideration is required for two stages in this procedure:

Running the application: The application needs to be run under all of the “kinds” of input that it
is expected to experience in a production environment, i.e. a comprehensive test suite. Deter-
mining these inputs requires some knowledge of the application to ensure complete coverage.
Failure to provide complete coverage results in a subdomain that is too “tight”, and the applica-
tion will occasionally fail to access resources that it needs.

Granting the privilege: We are confining the application precisely because we do not trust it, and
therefore we cannot automatically assume that every file the application tries to access under
test is a legitimate file for the program to access. The file should be included in the subdomain
only after due consideration of the security implications.

For applications where source code is available, predicting the set of required resources should be
feasible. If anticipating the set of files an application needs to access is truly difficult, then it is quite
likely that the application represents a significant security threat, and should not be installed on
hosts requiring security.

For applications where source code is not available, a run-time testing methodology must be used
to experimentally identify all of the file resources that a program may try to access. To facilitate
this, we use the dep program that we developed for the InDependence project [16] (funded by a
student grant from USENIX). This program uses strace() to monitor the execution of a subject
program, and amasses a list of all the files accessed. dep’s use of strace() imposes heavier per-
formance and compatibility overhead than SubDomain, but is none the less sufficient for exploring
the file system domain of many programs. To further ease use, dep accumulates files accessed
across multiple runs, so that a large test suite can be applied, and then the list of files accessed in-
spected once at the end of testing.

An example subdomain profile is shown in Figure 5, providing all of the resources needed to run
the wwwcount CGI program (a popular web page hit counter program). Note the use of simple

Copyright (C) 2000 WireX Communications, Inc.

— 12 —

globbing to reduce the size of the subdomain specification when access to an entire directory is re-
quired. Figure 6 shows a more elaborate profile for the Apache web server itself, under a particular
configuration. A list of some of the programs that we have confined and tested, along with the size
of their subdomains, are listed in Table 1.

5 SubDomain Performance
Here we present a variety of SubDomain performance measurements. Section 5.1 describes our mi-
crobenchmarks on mediated system calls, and Section 5.2 describes our macrobenchmarks on a
confined PERL script interpreted by the mod_perl Apache module.

/home/httpd/cgi-bin/Count.cgi {
/etc/ld.so.cache r ,
/lib/lib* r ,
/lib/ld-linux.so.2 r ,
/etc/nsswitch.conf r ,
/etc/wwwcounter.conf r ,
/etc/localtime r ,
/var/log/httpd/wwwcount/wwwcount_log rw ,
/var/lib/wwwcount/* r ,
/var/lib/wwwcount/data/* rw ,
}

Figure 5 Subdomain for wwwcount CGI script

/usr/local/apache/bin/httpd {
/ r ,
/dev/null rw ,
/dev/urandom r ,
/etc/group r ,
/etc/hosts r ,
/etc/host.conf r ,
/etc/ld.so.cache r ,
/etc/localtime r ,
/etc/nsswitch.conf r ,
/etc/passwd r ,
/etc/resolv.conf r ,
/home/httpd/perl/* r ,
/lib/* r ,
/usr r ,
/usr/lib/gconv/ISO8859-1.so r ,
/usr/lib/gconv/gconv-modules r ,
/usr/lib/perl5/5.00503/* r ,
/usr/lib/perl5/site_perl/5.005/i386-linux/* r ,
/usr/local r ,
/usr/local/apache r ,
/usr/local/apache/conf/* r ,
/usr/local/apache/htdocs/* r ,
/usr/local/apache/logs* wl ,
/usr/share/locale/en_US/* r ,
/usr/share/locale/locale.alias r ,
}

Figure 6 Subdomain for Apache Web Server

Copyright (C) 2000 WireX Communications, Inc.

— 13 —

5.1 Microbenchmarks
Here we use the usual benchmarking technique to measure affected system calls by crafting pro-
grams that issue each system call 10,000 times, run the programs several times, discard the first run
to avoid cold cache effects, and average the remainder. All tests were performed on a dual-proces-
sor Pentium III 700 MHz, with 256 MB of RAM. Table 2 summarizes these results. We include
measurement of the get_pid() system call as a baseline for comparison against the
change_hat() system call, as get_pid() is commonly regarded as the simplest system call.

As expected, he major overhead appears in the open(), exec() and change_hat() system
calls, where SubDomain is checking the action against the subdomain specification for the con-
fined process.

5.2 Macrobenchmarks
Our macrobenchmark is SubDomain confinement of a PERL script to be executed via the
mod_perl Apache module, thus exercising SubDomain’s capability to confine active content
scripts. To exercise the web server’s cache, we replicated the PERL script 1000 times, and used the
Webstone performance benchmark to measure the overhead cost of PERL scripted web pages pro-
tected with SubDomain vs. without protection. The PERL script itself reads two files with some
busy-work in between, simulating a script that fetches a “container” template from one file, HTML

Table 1: SubDomain-confined Programs

Program Size of Subdomain
Simple bash shell script 31 files
PHF CGI program 14 files
CGI Mail program 7 files
htsearch CGI program 11 files
wwwcount CGI program 10 files
Apache web server 33 files
lpd 16 files
lpq 10 files
lpc 11 files
Postfix Mail Delivery Agent 15 files
Postfix-script helper program 65 files

Table 2: SubDomain Microbenchmarks in microseconds

System Call Standard Cost SubDomain Cost % Overhead
fork() 295 295 0%
exec() 1387 1487 7%
open() 3.71 5.39 45%
get_pid() vs. change_hat() 1.81 4.70 159%

Copyright (C) 2000 WireX Communications, Inc.

— 14 —

content from another file, and does some interim processing to merge the two, e.g. compute a hit
counter. The SubDomain profile for this script is shown in Figure 7.

The test environment used the same dual-processor Pentium III 700 MHz server with 256 MB of
RAM, and a private network (crossover cable) via 100 Mbit ethernet.

The test results are shown in Table 3, measured for 5 to 10 concurrent client connections. Tests
were run twice, and the results averaged. For all cases, the SubDomain overhead is between 1%
and 2%, i.e. in the noise range.

Table 3: SubDomain Macrobenchmarks with WebStone

Test # of
Clients

Connection
Rate

Avg. Response
Time (ms)

Avg. Client
Throughput

Std. 5 75.97 66.5 26.29
SubDomain 5 75.19 66.5 26.02
% Overhead 1% 0% 1%
Std. 6 78.14 77 27.04
SubDomain 6 76.56 78 26.49
% Overhead 2% 1.3% 2%
Std. 7 78.38 89 27.13
SubDomain 7 77.24 90.5 26.73
% Overhead 1.45% 1.7% 1.5%
Std. 8 78.26 102 27.08
SubDomain 8 76.71 104 26.54
% Overhead 2% 2% 2%
Std. 9 78.24 115 27.08
SubDomain 9 77.02 116.5 26.66
% Overhead 1.6% 1.3% 1.6%
Std. 10 78.43 127 27.15
SubDomain 10 77.07 129.5 26.67
% Overhead 1.7% 2% 1.7%

/perl/0/cgitest-001.cgi {
/usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Registry.pm r
/etc/localtime r
/usr/lib/perl5/5.00503/* r
/home/httpd/perl/0/cgitest-001.cgi r
/home/httpd/perl/0/cgitemplate-001.html r
/home/httpd/perl/0/cgidata-001 r
/var/log/httpd/* w
} Figure 7 Test PERL Script’s SubDomain Profile

Copyright (C) 2000 WireX Communications, Inc.

— 15 —

6 Related Work
Here we describe work that, similar to SubDomain, specifically attacks the problem of confining
suspect programs. Despite the age of the notion of least privilege [33], much of this work has
emerged relatively recently. It is our conjecture that this is a result of a shift in emphasis from de-
fending secrecy (the dominant concern for military organizations) to defending integrity (the dom-
inant concern for Internet-connected businesses) and the emergence of the notion of survivability
[35]. This list of related work is necessarily partial, as the total body of related work is very large.

6.1 TRON
The TRON system [10] is a kernel enhancement for ULTRIX that can confine a program’s execu-
tion to a protection domain consisting of a finite set of capabilities in the form of file names. TRON
adds the tron_fork() system call, which functions exactly like the classic fork() system
call, except that it specifies the protection domain as an extra argument. TRON is semantically
most similar to SubDomain: the protection domains are the same (sets of files) and are similarly
applied to host programs, orthogonal to user privileges. The major differences are:

• TRON is discretionary, while SubDomain is mandatory. TRON provides user commands to run
programs in a confined domain, while SubDomain always runs a specified program in a con-
fined domain. Thus in the usual DAC vs. MAC trade-off, TRON is more convenient for indi-
vidual users, while SubDomain is more convenient for securing entire systems, e.g. server ap-
pliances.

• TRON’s finest granularity is the ULTRIX process; it cannot confine loadable modules (see Sec-
tion 3.2).

6.2 Janus
Janus [25] is a user-level mechanism for confining programs to a specific set of resources. Intended
to confine “helper” applications run from within a Web browser, Janus uses the ptrace() system
call and a monitoring process to mediate all system calls made by the helper application. If the ac-
tion proposed by the helper application violates a policy set by the user, then the monitoring pro-
cess rejects the request. This approach requires four system calls to be executed to effect one con-
fined system call.

6.3 Java 2 Security
The Java 2 security model [4] allows the JVM to be configured to assign particular capabilities to
designated Java classes, similar to the SubDomain notion of assigning file system capabilities to
programs. This is an enrichment over the original Java security model [26] which assigned one
fixed set of capabilities to remotely-loaded applets (almost nothing), and another fixed set of capa-
bilities to locally-loaded applets (almost everything).

The Java 2 security mechanism is notable as the only system other than SubDomain capable of con-
fining sub-process components, in that Java classes are typically smaller than the host OS process-
es. Naturally, the Java 2 security model does not apply to non-Java native executables.

Copyright (C) 2000 WireX Communications, Inc.

— 16 —

6.4 chroot Jail
The chroot() system call2 makes the argument directory be the effective root directory, i.e. “/”
for the invoking process. The point of this operation is that the file system domain for the affected
process is now limited to the contents of the argument directory. Any files that the application
needs to access must be placed inside the chroot directory, or the access will fail.

The chroot technique is a popular form of confinement, in large part because standard kernels
(e.g. Linux) support it. However, chroot has defects in all three of the dimensions a security en-
hancement should address:

Security: chroot jails are resistant to oblivious attempts to escape the jail, i.e. attempts to access
files that are not accessible within the jail. However, if the attacker can execute their own code
within the chroot jail, it is fairly easy to break the jail and access outside files. Thus jailed
programs generally cannot be trusted with strong privileges, i.e. it is insecure to depend on
chroot to confine a root process.

Compatibility: Each chroot’d program must have the necessary components of the file system
replicated within its jail, which is problematic if the program requires access to a large, complex
set of files, i.e. shell scripts need all invoked programs replicated into the chroot jail. Thus
setting up a chroot jail can be a lot of tedious, complex work. The chroot technique also
breaks programs that need to interact with other parts of the system.

Performance: Because chroot jails require duplication of all resources needed by the jailed pro-
gram (soft or hard links could be used as escape routes) they consume excessive disk space and
file system buffer cache space.

6.5 Type Enforcement
The type enforcement work [13, 7, 8] has recently been extended to provide better support for pro-
gram confinement. Kernel hypervisors [28] provide a facility for installing small state machines
that intercept kernel system calls and enforce a security policy. Such a facility can be viewed as a
tool that could be used to build a SubDomain-like least privilege system. Fraiser, Badger and Feld-
man provide a similar tool for building security policy enforcement automata [23]. SubDomain
provides the following key advantages over this technique:

Parsimony: SubDomain is much simpler than the TE and DTE implementations; the SubDomain
kernel code is approximately 1/10 the size of the DTE kernel patch. Simplicity is critical in se-
curity systems.

Safety: The DTE Wrapper system [23] allows code to be inserted into the operating system to per-
form mediation. While this is a powerful technique, it is also dangerous: malicious DTE wrap-
per code could just as easily be inserted. In contrast, SubDomain profiles are easy to inspect to
determine the security implications of updating a SubDomain profile. Furthermore, it is strictly
safe to install a SubDomain profile where none existed before, because SubDomain strictly lim-
its program privileges.3

2.“man chroot” on most UNIX Systems
3.This observation due to Blaine Burnham.

Copyright (C) 2000 WireX Communications, Inc.

— 17 —

6.6 Application-Specific Mechanisms
Various application environments provide their own least privilege-like mechanisms. For instance,
the PERL interpreter includes a facility known as “taint”, in which input provided to the PERL
script cannot be used to formulate an action (i.e. system() operation) unless it has been “ade-
quately” inspected by the PERL script [41]. PERL also includes a “safe PERL” facility, where in
the programmer can specify a set of PERL operators that the script may not use.

Another application-specific least privilege mechanism is the notion of “wrappers.” For example,
CGI Wrappers [31] causes a CGI script to be run with the user-ID of the script owner, rather than
the user-ID of the web server. Combined with the synthetic user-ID notion described in Section
2.1.1, CGI Wrappers can construct a least privilege environment for CGI scripts.

6.7 PACLs: Program-based Access Control Lists
We believe PACLs [42] to be the first instance of an access control system based on the program
performing the operation. The PACL system is the exact dual of the SubDomain notion: files have
an access control list that enumerates programs that are permitted to operate on that file. A simu-
lated PACL system was built and evaluated, but an actual PACL system was never finished.

7 Status & Availability
The implementation is not complete with respect to the description in this paper.

• The absolute and relative sub-domains described in Section 3.1is not complete: child processes
either inherit the parent’s profile, or use their own profile if one is specified.

• The multiple modes of requiring SubDomain confinement described in Section 4 is only par-
tially implemented. The implementation currently supports “paranoid” mode where all process-
es must have SubDomain confinement, and “open” mode, where only the programs that are
specified are confined by SubDomain.

SubDomain is implemented for Linux, and is available from http://immunix.org . The ker-
nel enhancement portion is licensed under the GPL, and the non-kernel portions are proprietary to
WireX but available for free for non-commercial use.

8 Conclusions
Vulnerable software is a major security problem, mandating constant system administrator atten-
tion to keep systems up to date with vendor-supplied security patches. This is especially problem-
atic for complex Internet servers, which are required to provide extensive services to anyone on the
Internet. Some form of confinement mechanism to approximate least privilege is the generic solu-
tion, but often imposes more costs than administrators deploying in “internet time” can bear. Our
SubDomain confinement mechanism advances over previous confinement work, simplifying both
implementation and administration overheads by confining programs instead of users.

This approach enables SubDomain confinement to be packaged with programs, in contrast with
confinement mechanisms that are bound to the system. SubDomain also provides fine-grained pro-
tection, confining software components finer than the host OS process, providing the unique capa-
bility to protect potentially vulnerable server modules such as Microsoft’s Front Page Extensions

Copyright (C) 2000 WireX Communications, Inc.

— 18 —

to the Apache web server. We have implemented and tested the system, showing that it provides
all three essential properties of a security enhancement: enhanced security, software compatibility,
and preserved performance.

References
[1] Bowen Alpern and Fred B. Schneider. Defining Liveness. Information Processing Letters,

21(4):181–185, 1985.

[2] Edward Amoroso. Fundamentals of Computer Security Technology. Prentice Hall,
Englewood Cliffs, NJ, 1994.

[3] Anonymous. The Java Web Server Architecture Overview, 1997. http://
www.javasoft.com/products/java-server/documentation/
webserver1.1/.

[4] Anonymous. JDK 1.2 Security. http://java.sun.com/products/jdk/1.2/
docs/guide/security/index.html, March 1998.

[5] Assorted. NCSA HTTPd Tutorial: Server Side Includes. http://
hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html.

[6] Assorted. PHP Hypertext Processor. http://php3.org/.

[7] L. Badger, D.F. Sterne, and et al. Practical Domain and Type Enforcement for UNIX. In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May 1995.

[8] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and Sheila A.
Haghighat. A Domain and Type Enforcement UNIX Prototype. In Proceedings of the
USENIX Security Conference, 1995.

[9] Brian Behlendorf, Roy T. Fielding, Rob Hartill, David Robinson, Cliff Skolnick, Randy
Terbush, Robert S. Thau, and Andrew Wilson. Apache HTTP Server Project. http://
www.apache.org.

[10] Andrew Berman, Virgil Bourassa, and Erik Selberg. TRON: Process-Specific File Protection
for the UNIX Operating System. In Proceedings of the 1995 Winter USENIX Conference.
USENIX Association, 1995.

[11] D. J. Bernstein. qmail, 1990. http://cr.yp.to/qmail.html.

[12] M. Bishop and M. Digler. Checking for Race Conditions in File Accesses. Computing
Systems, 9(2):131–152, Spring 1996. Also available at http://
olympus.cs.ucdavis.edu/ bishop/scriv/index.html.

[13] W.E. Bobert and R.Y. Kain. A Practical Alternative to Hierarchical Integrity Policies. In
Proceedings of the 8th National Computer Security Conference, Gaithersburg, MD, 1985.

[14] CERT. Advisory CA-96.06: Vulnerability in NCSA/Apache CGI Example Code. ftp://
info.cert.org/pub/cert_advisories/CA-96.06.cgi_example_code ,
September 1996.

[15] CERT. Advisory CA-98.05: Multiple Vulnerabilities in BIND. ftp://
info.cert.org/pub/cert_advisories/CA-98.05.bind_problems, May
1998.

Copyright (C) 2000 WireX Communications, Inc.

— 19 —

[16] Crispin Cowan, Ryan Finnin Day, and Hao Zhao. InDependence: Automating the Discovery
of Application Dependencies. http://www.cse.ogi.edu/DISC/projects/
independence, 1997.

[17] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron
Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In 7th USENIX Security Conference, pages 63–77,
San Antonio, TX, January 1998.

[18] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. Buffer
Overflows: Attacks and Defenses for the Vulnerability of the Decade. In DARPA
Information Survivability Conference and Expo (DISCEX), January 2000. Also presented as
an invited talk at SANS 2000, March 23-26, 2000, Orlando, FL, http://schafercorp-
ballston.com/discex.

[19] Michele Crabb. Curmudgeon’s Executive Summary. In Michele Crabb, editor, The SANS
Network Security Digest. SANS, 1997. Contributing Editors: Matt Bishop, Gene Spafford,
Steve Bellovin, Gene Schultz, Rob Kolstad, Marcus Ranum, Dorothy Denning, Dan Geer,
Peter Neumann, Peter Galvin, David Harley, Jean Chouanard.

[20] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From HotJava to
Netscape and Beyond. In Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, 1996. http://www.cs.princeton.edu/sip/pub/
secure96.html.

[21] eEye. IIS Remote Hole. http://www.eeye.com/database/advisories/
ad06081999/ad06081999.html, June 1999.

[22] David F. Ferraiolo and Richard Kuhn. Role-Based Access Control. In Proceedings of the
15th National Computer Security Conference, Baltimore, MD, October 1992.

[23] Tim Fraser, Lee Badger, and Mark Feldman. Hardening COTS Software with Generic
Software Wrappers. In Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1999.

[24] Neal Glew and Greg Morrisett. Type-Safe Linking and Modular Assembly Language. In
Twenty-Sixth ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 250–261, San Antonio, TX, January 1999. http://
www.cs.cornell.edu/talc/papers.html.

[25] Ian Goldberg, David Wagner, Randi Thomas, and Eric Brewer. A Secure Environment for
Untrusted Helper Applications. In 6th USENIX Security Conference, San Jose, CA, July
1996.

[26] James Gosling and Henry McGilton. The Java Language Environment: A White Paper.
http://www.javasoft.com/docs/white/langenv/, May 1996.

[27] J.A. McLean. A General Theory of the Composition for Trace Sets Closed Under Selective
Interleaving Functions. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 79–93, Oakland, CA, May 1994.

[28] Terrance Mitchem, Raymond Lu, and Richard O’Brien. Using Kernel Hypervisors to Secure
Applications. In Proceedings of the Annual Computer Security Application Conference,
December 1997.

Copyright (C) 2000 WireX Communications, Inc.

— 20 —

[29] “Mudge”. How to Write Buffer Overflows. http://l0pht.com/advisories/
bufero.html, 1997.

[30] George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-Time Checking. In
Proceedings of the USENIX 2nd Symposium on OS Design and Implementation (OSDI’96),
1996. Also available at http://www.usenix.org/publications/library/
proceedings/osdi96/necula.html.

[31] Nathan Neulinger. CGIWrap: User CGI Access, 1997. http://www.unixtools.org/
cgiwrap/.

[32] “Aleph One”. Smashing The Stack For Fun And Profit. Phrack, 7(49), November 1996.

[33] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer
Systems. Proceedings of the IEEE, 63(9), November 1975.

[34] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role Based Access Control
Models. IEEE Computer, pages 38–47, February 1996.

[35] Howie Shrobe. ARPATech ’96 Information Survivability Briefing. http://
www.darpa.mil/ito/ARPATech96_Briefs/survivability/
survive_brief.html, May 1996.

[36] Marc Slemko. Microsoft FrontPage 98 Security Hell. http://www.worldgate.com/
marcs/fp/, October 1997.

[37] Robert E. Strom and Shaula Alexander Yemini. Typestate: A Programming Language
Concept for Enhancing Software Reliability. IEEE Transactions on Software Engineering,
12(1):157–171, January 1986.

[38] Linus Torvalds and et al. Linux Operating System. http://www.linux.org/.

[39] United States Department of Defence. Reference Manual for the Ada Programming
Language ANSI/MIL-STD-1815A-1983. United States Department of Defence, February
1983.

[40] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM Symposium on
Operating System Principles (SOSP’93), pages 203–216, Asheville, NC, December 1993.

[41] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl. O’Reilly &
Associates, Inc., 2nd edition, 1996.

[42] D.R. Wichers, D.M. Cook, R.A. Olsson, J. Crossley, P. Kerchen, K. Levitt, and R. Lo.
PACL’s: An Access Control List Approach to Anti-viral Security. In Proceedings of the 13th
National Computer Security Conference, pages 340–349, Washington, DC, October 1-4
1990.

