Janus: an approach for confinement of untrusted applications

by David A. Wagner

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the degree
of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Eric Brewer
Research Advisor

(Date)

X ok ok ok ok Xk X

Professor Alex Aiken

Second Reader

(Date)

ii

Abstract

Security is a serious concern on today’s computer networks. Many applications
are not very good at resisting attack, and our operating systems are not very good at
preventing the spread of any intrusions that may result. In this thesis, we propose to
manage the risk of a security breach by confining these untrusted (and untrustworthy)
applications in a carefully sanitized space. We design a secure environment for confinement
of untrusted applications by restricting the program’s access to the operating system. In
our prototype implementation, we intercept and filter dangerous system calls via the Solaris
process tracing facility. This enables us to build a simple, clean, user-mode mechanism for
confining untrusted applications. Our implementation has negligible performance impact,
and can protect pre-existing legacy code.

Contents

List of Figures

1 Introduction

1 Motivation e e e e e e e e
2 The challenges L
3 An overview of thisthesis

2 The Design and Implementation of Janus

4 Design o . e
) Implementation
5.1 Choosing an operating system
5.2 The policy modules
5.3 The framework
5.4 The optimizer
6 Security and assurance Lo Lo
7 Asecurity policy
3 Applications
8 Classical confinement and wholly untrusted applications
8.1 Mobilecode e e
8.2 Uploading personalized agents
8.3 Programming contests o oL
9 Compartmented systems and partially untrusted applications
9.1 Helper applications for web browsing
9.2 MIME-aware mail agents
9.3 Protected web browsing L o oo
9.4 Sendmailo e
9.5 Other system daemons
9.6 CGIscripts o o e e e
10 Summary e e e e e e e e e e e

4 OS support for Janus
11 Theory and foundations oL
12 Real implementations oo oo

iii

BN =

— W W oo 0 Ut G

13

17
17
18
19
22
22
22
23
24
25
28
28
29

12.1 Which features Janusneeds
12.2 Evaluating SLIC e e e
12.3 Ewvaluating /proc
12.4 Evaluatingptrace oo
12.5 ptrace++o
13 Principles for designing interposition facilities
14 Summary o e e e e e e e e e

5 Other work
15 Related work
16 Limitations
17 Future work

6 Conclusions

Bibliography

v

33
36
37
37
37
43
46

48
48
51
52

54

55

List of Figures

21

2.2

4.1
4.2

Handling the fork system call. Solid lines depict the parent-child relation-
ships, and dashed lines are drawn from tracer to tracee. In the leftmost
picture, untrusted application Ul is being traced by Janus process J1. In
the middle picture, Ul has forked an untrusted child process U2, and Janus
responds by pausing U2 and forking a copy of itself J2 to handle U2. (With
the /proc filesystem, by default J2 inherits the tracing relationship with Ul.)
In the rightmost picture, J2 has detached from Ul and attached to U2; now
U2 may berestarted.
A sample configuration file. oL

The high-level organization of Janus.
The code size of key Janus components. The figure is divided vertically into
portable code, adaption code, and kernel code; the latter two categories are

divided horizontally according to whether they are built for Solaris or Linux.

11
16

41

42

vi

Acknowledgements

Some of these results have been published previously as joint work with Tan Gold-
berg, Randi Thomas, and Eric Brewer in [40]. Some of the text from that paper (as well
as some text from the unpublished manuscript [70], jointly written with Ian Goldberg and
Eric Brewer) has been adapted for use herein.

We gratefully acknowledge the efforts of Michael Kaminski, who helped code up
the necessary extensions to apply Janus to sendmail.

Thanks also to Steven Bellovin, David Oppenheimer, Armando Fox, Steve Gribble,
Alex Aiken, and various anonymous reviewers for their helpful comments. Thanks especially
to Alex Aiken for a number of insightful observations about the design of Janus.

Finally and most importantly, I am deeply indebted to Eric Brewer for his direction
and advice. His comments, both high-level and low-level, have greatly improved this thesis.
Thank you, Eric.

Chapter 1

Introduction

Over the past several years the Internet environment has changed drastically. This
network, which was once populated almost exclusively by cooperating researchers who
shared trusted software and data, is now inhabited by a much larger and more diverse
group that includes pranksters, crackers, and business competitors. This increases the risk
of serious attacks on critical systems. At the same time, the stakes are higher than ever
before: corporate entities want to engage in electronic commerce over the net, and the value
of the data carried over these networks is increasing constantly.

We can identify one common theme underlying many of the vulnerabilities found in
today’s network. The software and data exchanged on the Internet is very often unauthen-
ticated, so it could easily have been constructed by an adversary. At the same time, much
of the software we run is not very good at handling adversarial inputs, and our operating
systems are not very good at confining any intrusions that may result.

We propose to address this problem by providing a first cut at a tool that can re-
duce the harmful effects of security compromises. Our approach is to confine the untrusted
software in a limited sandbox by monitoring and restricting the system calls it performs.
As an example of this approach, we built Janus', a secure environment for untrusted ap-
plications; a crucial implementation technique is to take advantage of the Solaris process
tracing facility to enforce the desired restrictions on system calls.

1 Motivation

We see two important reasons one may classify an application as untrusted. First,
the application may have come from an untrusted source—either downloaded over an inse-
cure link, or written by an uncertified programmer. This first scenario represents the case
of an application with potentially malicious intent. Alternatively, the application may be
untrusted if it is exposed to outside attack yet not trusted to protect itself against adversar-
ial inputs. This second scenario represents the case of a programmer with good intentions
but insufficient coding skills to prevent catastrophic failure. In either case, we will want to
protect ourselves against the potential agent of disaster.

!Janus is the Roman god of entrances and exits, who had two heads and eternally kept watch over
doorways and gateways to keep out intruders.

One simple solution is to avoid running such untrusted programs. But in practice
this is insufficient; many of these programs are too useful to abandon, and secure alternatives
with comparable functionality often do not exist. Therefore, for some software, we must
find a way to manage the risk.

This thesis develops a more realistic approach: confinement. We propose to con-
fine untrustworthy and dangerous programs inside an environment that restricts the actions
they can perform, thus managing the risk by limiting the harm that a potential security
compromise could cause. We argue that a powerful technique for confining untrusted ap-
plications is to interpose a user-level reference monitor on the interface the OS presents
to untrusted applications. We implement this abstract model by intercepting system calls
invoked by the untrusted application and filtering potentially harmful requests before they
are executed. This has a number of powerful advantages:

e We retain significant flexibility to transparently enforce per-application security poli-
cies from user-level code.

e We can secure legacy code, such as sendmail or Netscape.
e We can safely execute mobile code inside our restricted sandbox.

e We can attain much higher assurance than the existing OS mechanisms can provide.

2 The challenges

What security requirements are demanded from a successful protection mecha-
nism? Simply put, an outsider who has control over the untrusted application must not
be able to compromise the confidentiality, integrity, or availability of the rest of the sys-
tem, including the user’s files or account. Any damage must be limited to the application’s
display window, temporary files and storage, and associated short-lived objects. In other
words, we insist on the Principle of Least Privilege: the application should be granted the
most restrictive collection of capabilities required to perform its legitimate duties, and no
more. This ensures that the damage a compromised application can cause is limited by the
restricted environment in which it executes. In contrast, an unprotected Unix application
that is compromised will have all the privileges of the account from which it is running,
which is unacceptable.

Imposing a restricted execution environment on untrusted applications is more
difficult than it might seem. Many traditional paradigms such as the reference monitor and
network firewall are insufficient on their own, as discussed below. In order to demonstrate
the difficulty of this problem and appreciate the need for a novel solution, we explore five
possible approaches.

1. BUILDING SECURITY DIRECTLY INTO EACH UNTRUSTED APPLICATION: Tak-
ing things to the extreme, we could insist all untrusted applications be rewritten in a
simple, secure form. We reject this as completely impractical; it is simply too much work
to re-implement them, at least in the short term. More realistically, we could adopt a
reactive philosophy, recognizing individual weaknesses as each appears and engineering
security patches one at a time. Historically, this has been a losing battle, at least for

large applications: for instance, explore the sad tale of the sendmail “bug of the month”
1,2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 21]. In any event, attempts to build security directly
into untrusted applications would require each program to be considered separately—mnot
an easy approach to get right on short notice. For now, we are stuck with many useful
programs that offer only minimal assurances of security; therefore what we require is a
general, external protection mechanism.

2. ADDING NEW PROTECTION FEATURES INTO THE OS: We reject this design
approach for several reasons. First, it is inconvenient. Development and installation both
require modifications to the kernel. This approach, therefore, has little chance of becoming
widely used in practice. Second, wary users may wish to protect themselves without needing
the assistance of a system administrator to patch and recompile the operating system.
Third, security-critical kernel modifications are very risky: a bug could end up allowing
new remote attacks or allow a compromised application to subvert the entire system. The
chances of exacerbating the current situation are high. It is better to find a user-level
mechanism that lets users protect themselves and lets pre-existing access controls serve as
a backup; then even in the worst case, introducing the mechanism cannot reduce system
security.

3. THE PRE-EXISTING REFERENCE MONITOR: The traditional operating system’s
monolithic reference monitor cannot protect against attacks on untrusted applications di-
rectly. At most, it could prevent a penetration from spreading to new accounts once a user’s
account has been compromised, but by then serious damage has often already been done.
In practice, even that goal is unattainable. Against a motivated attacker, most operating
systems fail to prevent the spread of penetration; once one account has been subverted, the
whole system typically falls soon thereafter.

4. THE CONVENTIONAL NETWORK FIREWALL: Packet filters cannot distinguish
between different types of HT'TP traffic, let alone analyze the data or mobile code contained
therein for security threats. In theory, a proxy could, but it would be extremely hard-pressed
to understand all possible file formats, interpret the often-complex application languages,
and squelch all dangerous data. This would make for a very complex and thus untrustworthy
proxy.

5. JAVA: Java has two significant limitations. First, legacy systems have little to
gain from Java: legacy code cannot run inside a protected Java environment, and rewriting
an entire application in Java is often too much work. In contrast, because it is orthogonal to
application code, Janus can help protect legacy code as easily as new code. Second, many
security researchers have concerns over Java’s ability to contain mobile code reliably with
high assurance. In this regard, we can help. One can use Janus as a wrapper around Java
as a form of “belt-and-suspenders” security—an adversary would have to penetrate both
Java and Janus to compromise security—so this approach offers strictly better security for
mobile code than Java can provide on its own.

6. PROOF-CARRYING CODE: Proof-carrying code [54, 59] and its ancestor, soft-
ware fault isolation [71], provide a way for a compiler to prove to a runtime verifier that the
code it generates satisfies some security policy; this is typically done by embedding extra
checks at any operation that cannot statically be proven safe. This provides a powerful and
flexible framework for executing mobile code, and it allows us to specify very fine-grained

security policies (so long as we can formalize them in the appropriate formal logic) such as
memory safety. However, proof-carrying code systems force us to specify the security policy
at compile time, instead of at run time, and existing proof-carrying code systems cannot
handle pre-compiled legacy code. Therefore, Janus seems preferable when the policy might
change or when we need to handle legacy code.

This overview shows that the traditional paradigms are either impractical or in-
sufficient. Application re-writes are too much work; kernel modifications are too difficult
and too risky to deploy. At the same time, standard host security and firewall mechanisms
are inadequate for the task at hand. Finally, the need to protect legacy applications rules
out Java. A new approach is needed.

3 An overview of this thesis

We have organized this thesis around four high-level topics: implementation ap-
proaches, applications, lessons, and other work.

In Chapter 2, we describe the design and implementation of the Janus prototype.
Section 4 addresses design issues, Section 5 touches on a few interesting features of our
implementation, Section 6 briefly examines assurance issues in our tool, and Section 7
outlines the core security policy that we have converged on.

Next, Chapter 3 discuss a number of interesting applications for Janus. It covers
protection for mobile code, web browser helper applications, web browsers, sendmail, other
security-critical system daemons, and a few other possibilities. This shows that Janus is a
powerful tool with broad applicability.

Third, we analyze the implications for OS designers in Chapter 4. We examine
various interfaces for system-call interposition in depth, conclude that Janus requires only
minimal support, and argue that OS designers ought to include this support.

Fourth, Chapter 5 addresses other work relevant to Janus. Section 15 surveys some
related work, Section 16 discusses some limitations of our approach, Section 17 proposes
some areas for future work,

Finally, Chapter 6 concludes the thesis.

Chapter 2

The Design and Implementation of
Janus

Janus is a powerful tool for confining untrusted applications. In this chapter,
we describe the design and implementation of our prototype. To support the design and
implementation choices we made, we also briefly discuss why we believe our tool is secure
and outline a basic security policy for it.

4 Design

Our design, in the style of a reference monitor, centers around the following basic
assumption:

AN APPLICATION CAN DO LITTLE HARM IF ITS ACCESS TO THE
UNDERLYING OPERATING SYSTEM IS APPROPRIATELY RESTRICTED.

Our goal, then, was to design a user-level mechanism that monitors an untrusted application
and disallows harmful system calls’.

A corollary of the assumption is that an application may be allowed to do anything
it likes that does not involve a system call. This means it may have complete access to its
address space, both code and data. Therefore, any user-level mechanism we provide must
reside in a different address space. Under Unix, this means having a separate process.

One of our basic design goals was SECURITY. The untrusted application should
not be able to access any part of the system or network for which our program has not
granted it permission. Like others before us, we use the term sandbozring to describe the
concept of confining an untrusted application to a restricted environment, within which it
has free reign. This term was introduced before in, e.g., [71] (although it was used there in
a slightly different setting).

! As an aside, it is worth mentioning that the boxed principle above is not sufficient on its own to prevent
denial-of-service attacks. Fortunately, in practice not much extra work is required: we simply set limits on
the application’s resource usage using the Unix setrlimit(2) primitive before transferring control to the
application. See also Section 5.3.

To achieve security, a slogan we kept in mind was “keep it simple” [47]. Simple
programs are more likely to be secure [25, Theorem 1]; simplicity helps to avoid bugs, and
makes it easier to find that which creep in. We would like to keep our mechanism simpler
than the applications that would run under it.

Another of our goals was VERSATILITY. We would like to be able to allow or
deny individual system calls flexibly, perhaps programatically depending on the arguments
to the call. For example, the open system call could be allowed or denied depending
on which file the application was trying to open, and whether it was for reading or for
writing. Maintaining flexibility allows us to use the tool to protect many different types of
applications.

Our third goal was CONFIGURABILITY. Different sites have different requirements
as to which files the application should have access, or to which hosts it should be allowed
to open a TCP connection. In fact, our program ought to be configurable in this way even
on a per-user or per-application basis.

On the other hand, we did not strive for the criteria of safety or portability of
applications. By safety, we mean protecting the application from its own bugs. We allow
the user to run any program he wishes, and we allow the executable to play within its own
address space as much as it would like. In other words, our tool focuses on security for the
untrusted application, not correctness.

We adopted for our program, then, a simple, modular design: a framework, which is
the essential body of the program, and dynamic modules, used to implement various aspects
of a configurable security policy by filtering relevant system calls. This decomposition allows
us to separate mechanism from policy [47].

The framework reads a configuration file, which can be site-, user-, or application-
dependent. This file lists which of the modules should be loaded, and may supply parameters
to them. For example, the configuration line

path allow read,write /tmp/*

would load the path module, passing it the parameters “allow read,write /tmp/#*” at
initialization time. This syntax is intended to allow files under /tmp to be opened for reading
or writing.

Each module filters out certain dangerous system-call invocations, according to
its area of specialization. When the application attempts a system call, the framework
dispatches that information to relevant policy modules. Each module reports its opinion
on whether the system call should be permitted or quashed, and any necessary action is
taken by the framework. We note that, following the Principle of Least Privilege, we let the
operating system execute a system call only if some module explicitly allows it; the default
is for system calls to be denied. This behavior is important because it causes the system to
err on the side of security in case of an under-specified security policy.

Each module contains a list of system calls that it will examine and filter. Note
that some system calls may appear in several modules’ lists. A module may assign to each
system call an arbitrary function that validates the arguments of the call before the call is
executed by the operating system.? The function can then use this information to optionally

In addition, a module can assign to a system call a similar function which gets called after the system
call has executed, just before control is returned to the untrusted application. This function can examine

update local state, and then suggest allowing the system call, suggest denying it, or make
no comment on the attempted system call.

The suggestion to allow is used to indicate a module’s explicit approval of the
execution of this system call. The suggestion to deny indicates a system call that is to be
denied execution. Finally, a no comment response means that the module has no input as
to the dispatch of this system call.

Modules are listed in the configuration file from most general to most specific, so
that the last relevant module for any system call dictates whether the call is to be allowed
or denied (unless it has “no comment”). For example, a suggestion to allow countermands
an earlier denial. Note that a no comment response has no effect: in particular, it does not
override an earlier deny or allow response.

Normally, when conflicts arise, earlier modules are overridden by later ones. To
escape this behavior, for very special circumstances modules may unequivocally allow or
deny a system call and explicitly insist that their judgement be considered final. In this
case, no further modules are consulted; a super-allow or super-deny cannot be overridden.
The intent is that this feature should be used quite rarely, for only the most critical of uses.
Write access to .rhosts could be super-denied near the top of the configuration file, for
example, to provide a safety net in case we accidentally miswrite a subsequent file access
rule. We have never used the super-allow keyword, and in retrospect it probably should
have been omitted from the design.

Relying on the ordering of the policy rules is potentially error-prone, but it gives
the policy specification language great power and flexibility by allowing successive refine-
ment of the policy. For instance, it allows us to implement the principle of least privilege
easily: we can deny a broad class of system calls at the top of the configuration file, and
later craft out limited exceptions to this broad rule with modules listed further down in the
configuration file. See Figure 2.2 for an example where this technique is used to initially
deny file access to most absolute pathnames and later allow access to relative paths and
selected absolute paths. However, in hindsight we did not use the ordering rules as much
as we initially expected, and this feature could probably be eliminated with better module
design and with a slightly more powerful syntax for pattern matching.

Note also that the existence of super keywords may cause the tool to behave in
unexpected ways if modules have visible side effects, since a super judgement will prevent
later modules from executing. In practice, none of our modules cause super judgements
where side effects could occur, but in retrospect, this was blind luck rather than careful
design. This provides additional evidence that relying on the ordering of policy rules may
have been a mistake.

To sum up, in designing the framework we aimed at providing simplicity and
versatility as much as possible, though these goals often conflict. In retrospect the policy
specification language probably could have been simplified with little loss in power, but on
the whole we are quite happy with the rest of our framework for dispatching system calls.

These goals of versatility and configurability provided sound reasons to reject an
approach based on an in-kernel implementation. It is extremely difficult for kernel code to
read configuration files. Also, ease-of-development and similar benefits must be discarded

the arguments to the system call, as well as the return value, and update the module’s local state.

with any kernel implementation. Finally, as we mentioned before, a kernel implementation
runs the risk of introducing new security holes to the system, and system administrators
are much less likely to install any tool that requires modifications to the kernel. Therefore,
we focused on building a user-level solution.

One of the core benefits of our design is its simplicity. Simpler programs are
typically more likely to be correct and easier to audit, and our final implementation contains
only a few thousand lines of code. Furthermore, much of the complexity can be found in
just one or two modules; those modules need not be loaded for applications that don’t need
them, so for such applications the tool should have even better assurance properties. By
allowing the implementation to be as simple as possible®, we have improved our chances of
getting the code reasonably correct.

5 Implementation

5.1 Choosing an operating system

In order to implement our design, we needed to find an operating system that
allowed a user-level process to watch the system calls executed by another process and to
control the second process in various ways (such as causing selected system calls to fail).

Luckily, most operating systems have a process-tracing facility, intended for de-
bugging purposes. In such cases, typically one can find a program, such as trace, strace,
or truss, that can observe the system calls performed by another process as well as their
return values. Under the hood, these programs often use the ptrace system call, which
allows the tracer to register a callback to be executed whenever the traced process issues
a system call. Unfortunately, ptrace offers only very coarse-grained all-or-nothing tracing:
we cannot trace a few system calls without tracing all the rest as well. Another serious
limitation of the ptrace interface is that many OS implementations provide no way for a
tracing process to abort a dangerous system call without killing the traced process entirely.
Both of these shortcomings make ptrace unsuitable for our purposes.

Some more modern operating systems, such as Solaris 2.4 and OSF/1, however,
offer access to a better process-tracing facility through the /proc virtual filesystem. This
interface allows direct control of the traced process’s address space. Furthermore, it supports
fine-grained control: we can request callbacks on a per-syscall basis. Finally, the proc
interface provides a way for the tracer to abort a system call requested by the tracee before
the syscall executes.

There are only slight differences between the Solaris and the OSF/1 interfaces
to the /proc facility. One of them is that Solaris provides an easy way for the tracing
process to determine the arguments and return values of a system call performed by the
traced process. Also, Solaris operating system is somewhat more widely deployed. For these
reasons, we chose Solaris 2.4 for our implementation.

3...but no simpler—with thanks to Albert Einstein.

5.2 The policy modules

The policy modules are used to select and implement security policy decisions.
They are dynamically loaded at runtime, so that different security policies can be configured
for different sites, users, or applications. We implemented a sample set of modules that can
be used to set up the traced application’s environment, and to restrict its ability to read or
write files, execute programs, and access the network. In addition, the traced application is
prevented from performing certain system calls, as described below. The provided modules
offer considerable flexibility themselves, so that one may configure them simply by editing
their parameters in the configuration file. However, if different modules are desired or
required, it is very simple to compile new ones.

Policy modules need to make a decision as to which system calls to allow, which
to deny, and for which a function must be called to determine what to do. The first two
types of system calls are the easiest to handle.

Some examples of system calls that are always allowed (in our sample modules)
are close, exit, fork, and read. The operating system’s protection on these system calls
is sufficient for our needs.

Some examples of system calls that are always denied (in our sample modules) are
ones that would not succeed for an unprivileged process anyway, like setuid and mount,
along with some others, like chdir, that we disallow as part of our security policy.

The hardest system calls to handle are those for which a function (a “guard”) must,
in general, be called to determine whether the system call should be allowed or denied. The
majority of these are system calls such as open, rename, stat, and kill whose arguments
must be checked against the configurable security policy specified in the parameters given
to the module at load time.

5.3 The framework

READING THE CONFIGURATION FILE: The framework starts by reading the
configuration file, which can be specified on the command line or as a system-wide default.
This configuration file consists of lines like those shown in Figure 2.2: the first word is the
name of the module to load, and the rest of the line acts as a parameter to the module.

For each module specified in the configuration file, dlopen(3x) is used to dynam-
ically load the module into the framework’s address space. The module’s init () function
is called, if present, with the parameters for the module as its argument.

The list of system calls and associated values and functions in the module is then
merged into the framework’s dispatch table. The dispatch table is an array, indexed by
system-call number, of linked lists. Each value and function in the module is appended to
the list in the dispatch table that is indexed by the system call to which it is associated.

The result, after the entire configuration file has been read, is that for each system
call, the dispatch table provides a linked list that can be traversed to decide whether to
allow or deny a system call.

SETTING UP THE TRACED PROCESS: After the dispatch table is set up, the
framework gets ready to run the application that is to be traced: a child process is fork()ed,
and the child’s state is cleaned up. This includes setting a umask of 077, setting limits on

10

virtual memory use, disabling core dumps, switching to a sandbox directory, and closing
unnecessary file descriptors. Modules get a chance to further initialize the child’s state; for
instance, the putenv module sanitizes the environment variables. The parent process waits
for the child to complete this cleanup, and begins to debug the child via the /proc interface.
It sets the child process to stop whenever it begins or finishes a system call. (Actually, only
a subset of the system calls are marked in this manner; see Section 5.4, below.) The child
waits until it is being traced, and executes the desired application.

In our sample security policy, the application is confined to a sandbox directory.
By default, this is a new subdirectory created in /tmp with a random name, although the
SANDBOX DIR environment variable can be used to override this choice. We create a new
temporary-use subdirectory in /tmp and confine the program to that subdirectory, rather
than simply allowing the application full access to /tmp, because we want to isolate the
untrusted application from other processes running on the same system. If the untrusted
application needs to receive data from other processes, we instruct the other processes (via
some out-of-band hint) to place their output in an appropriate temporary subdirectory
where the untrusted application can find it.

RUNNING THE TRACED PROCESS: The application runs until it performs a system
call. At this point, it is put to sleep by the operating system, and the tracing process wakes
up. The tracing process (Janus) determines which system call was attempted, along with
the arguments to the call. It then traverses the appropriate linked list in the dispatch table,
in order to determine whether to allow or to deny this system call.

If the system call is to be allowed, Janus simply wakes up the application, and the
system call is executed. If, however, the system call is to be denied, the tracing process
wakes up the application with the PRSABORT flag set. This causes the system call to abort
immediately, returning a value indicating that the system call failed and setting errno to
EINTR. In either case, the tracing process goes back to sleep immediately.

The fact that an aborted system call returns EINTR to the application presents a
potential problem. Some applications are coded in such a way that, if they receive an EINTR
error from a system call, they will retry the system call. Thus, if such a application tries to
execute a system call that is denied by the security policy, it will get stuck in a retry loop.
We detect this problem by noticing when a large number (currently 100) of the same system
call with the same arguments are consecutively denied. If this occurs, we assume the traced
application is not going to make any further progress, and just kill the application entirely,
giving an explanatory message to the user. We would prefer to be able to return other error
codes (such as EPERM) to the application, but Solaris does not support that behavior.

When a system call completes, the tracing process has the ability to examine the
return value if it so wishes. If any module had assigned a function to be executed when this
system call completes, as described above, it is executed at this time. This facility is not
widely used; it was developed primarily to support the fork() system call.

Since all children of untrusted processes are presumed to be untrusted as well, and
since our security policy requires that all untrusted processes be traced by Janus, we see
that we need to handle the creation of child processes to ensure that this policy is obeyed.
When a fork() or vfork() system call completes, the tracing process checks the return
value and then fork()s itself. The child of the tracing process then detaches from the

11

\ NS

U2 U2

Figure 2.1: Handling the fork system call. Solid lines depict the parent-child relationships,
and dashed lines are drawn from tracer to tracee. In the leftmost picture, untrusted ap-
plication U1 is being traced by Janus process J1. In the middle picture, Ul has forked an
untrusted child process U2, and Janus responds by pausing U2 and forking a copy of itself
J2 to handle U2. (With the /proc filesystem, by default J2 inherits the tracing relationship
with Ul.) In the rightmost picture, J2 has detached from Ul and attached to U2; now U2
may be restarted.

application and begins tracing the application’s child. Once the child Janus process has
enabled process tracing on the application’s child, the application’s child is allowed to begin
executing. See Figure 2.1 for a graphic depiction of this process. This method safely allows
the traced application to spawn a child (as ghostview spawns gs, for example) by ensuring
that all children of untrusted applications are traced as well.

We have not aimed for extensive auditing, but logging of the actions taken by the
framework would be easy to add to our implementation if desired.

We should point out that the Solaris tracing facilities will not allow a traced
application to exec() a setuid program. Therefore, untrusted applications cannot increase
their privileges. Furthermore, traced programs cannot turn off their own tracing.

5.4 The optimizer

Our program has the potential to add a nontrivial amount of overhead to the
traced application whenever we intercept a system call. In order to keep this overhead
down, we obviously want to intercept as few system calls as possible. However, we do not
wish to give up security to gain performance. Therefore, we apply several optimizations to
the system-call dispatch table when it is created.

One optimization is a simple form of constant propagation. We note that one com-
mon case arises when a module’s system-call handler always returns the same allow/deny
value (and leaves no side effects); this special case allows us to remove redundant values in
the dispatch table.

The most important optimization observes that certain system calls, such as write,

12

are always safe. This strategy is appropriate because IO in Unix is built around a capability
model: one requests capability via the open system call, and if the open call is allowed by
the kernel, a reference is returned that may be safely used with e.g. the write system call.
Since all access checks are done when the capability is bound by the open call to a file
object, we only need to check the open call; and since we trust the kernel to execute write
requests only when an appropriate capability is presented, we need not check the write
call.

When we know in advance that a system call will always be allowed, we need not
register a callback with the OS for them. This avoids the extra context switches to and
from the tracing process each time the traced application makes such a system call, and
thus those system calls can execute at full speed as though there were no tracing or filtering
in place. By eliminating the need to trace common system calls such as read and write,
we can greatly speed up overall performance.

Fortunately for us, the structure of the Unix system-call interface allows us to
apply this type of optimization to many of the system calls most critical to performance.
Thus we benefited from an interface that separates binding-time access checks for an object
from fast direct access to that object. See also Section 13 for more discussion on this point.

6 Security and assurance

There is no universally accepted way to assess whether our implementation is
secure; however, there are definite indications we can use to make this decision.

We believe in security through simplicity, and this was a guiding principle through-
out the design and implementation process. Our entire implementation consists of approx-
imately 2100 lines of code: the framework has 800, and the modules have the remaining
1300. Furthermore, we have attempted to minimize the amount of security-critical state
where possible. Since the design concept is a simple one, and because the entire program is
small, the implementation is easier to understand and to evaluate. Thus, there is a smaller
chance of having a security hole go undetected.

We performed some simple sanity checks to verify that our implementation appro-
priately restricts applications. More work on assurance is needed.

Most importantly, the best test is outside scrutiny by independent experienced
security researchers; a detailed code review would help improve the assurance and security
offered by our secure environment. All are encouraged to examine our implementation for
flaws.

Note that we rely on the OS kernel to enforce some minimal protection properties.
For instance, we assume that the operating system will protect Janus from the untrusted
application it is tracing.* As a slightly more subtle example, we rely on the invariant that
the kernel will not allow the traced application to perform a write on a file descriptor not
obtained via open: this allows us to perform the optimization of monitoring only open calls

“Note that these types of invariants have occasionally been violated when bugs are found in the kernel. A
recent example is a bug that let one kill any other process, bypassing permission checks by using idiosyncrasies
of the signals interface. Nonetheless, it is our experience that serious security holes in the kernel are far less
common than security exposures in application code.

13

and ignoring all write and read calls. In general, we have tried to rely on only the most
stable, well-understood protection properties guaranteed by the kernel, but if the kernel
operates with reckless disregard for security (or worse, with hostile intent), there is clearly
nothing Janus can do to remedy the situation.

7 A security policy

We implemented a sample security policy to test our ideas, as a proof of concept.
This one policy turned out to be very useful at confining a variety of interesting applica-
tions; but certainly if it were not sufficient for some needs, other policies could be easily
implemented.

Sandboxed processes may fork children, which we then recursively trace. Traced
applications can only send signals to themselves or to their children, and never to an un-
traced application. Our policy carefully limits resource usage and sanitizes environment
variables at initialization time.

We impose severe limits on access to the filesystem. We place the untrusted appli-
cation in a particular directory and allow it full access to files in or below this directory; To
prevent escape from this sandbox directory, we ensure that it cannot chdir out of this direc-
tory and always deny access to paths containing “..”. We provide the untrusted application
with read access to certain carefully controlled files referenced by absolute pathnames, such
as shared libraries and global configuration files.

We concentrate all access control in the open system call, and always allow read
and write calls. This is safe, because write is only useful when used on a file descriptor
obtained from a system call like open. This approach simplifies matters and also permits
an important performance optimization (see Section 5.4).

Of course, protecting the filesystem alone is not enough. Network access must
be carefully controlled, lest the untrusted application escape its sandbox and cause harm
elsewhere.® Yet nearly any practical application will legitimately require access to network
resources.

For example, some programs may need to open a window on the X11 display to
interact with the user. In our security policy, we allow network connections only to the X
display, and this access is allowed only through a safe X proxy. In theory, we could instead
buy a second monitor and set the X display of the sandboxed application to point to the
second monitor; this would provide robust security, but at great expense. Therefore, we
find that we must securely multiplex access to the X display for both trusted and untrusted
applications. We found it most natural to enforce this by carefully controlling network access
so the untrusted application can only access the display through a trusted application-level
proxy.

As X access control is all-or-nothing, X11 does not itself provide the security
services we require. A rogue X client has full access to all other clients on the same server,
so an otherwise confined application could compromise other applications if it were allowed

This is a crucial limitation of the chroot primitive. chroot can help control filesystem access reliably,
but its Achilles heel is that it does not control network access; for these reasons, chroot environments can
often be escaped if extra precautions are not taken.

14

uncontrolled access to X. Fortunately the firewall community has already built several safe
X proxies that understand the X protocol and filter out dangerous requests [44, 51]. We
integrated our Janus prototype with Xnest [51], which lets us run another complete instance
of the X protocol under Xnest. Xnest acts as a server to its clients (e.g. the sandboxed
applications), and its entire display is painted within one window managed by the root X
server. In this way, untrusted applications are securely encapsulated within the child Xnest
server and cannot escape from this sandbox display area or affect other normal trusted
applications. (For instance, attempting to cut-and-paste from a untrusted window inside
Xnest to a trusted window will fail, as will the reverse direction.) Xnest is not ideal—it is
not as small or simple as we would like—but any further advances in X protocol filtering
from the firewall community would likely provide immediate benefits for Janus as well.

Additional controls over network access are typically also necessary. For instance,
some applications need to be able to resolve hostnames via DNS. As another example, web
browsers need to be able to access web servers (typically on TCP port 80).

At the moment, we handle DNS by opening up a small hole in the sandbox to
allow UDP connections to port 53 on a single, specially designated local DNS server. We
take care to ensure that the designated DNS server runs the most secure DNS code we
can find (with no known holes), so a malicious application can’t easily escape this way.
Also, to help manage the risk, we only grant DNS access to the small subset of programs
that actually need it. If Berkeley had a firewall, we would point our untrusted applications
to a DNS server outside the firewall that knows nothing about internal hosts. Note that
this does introduce a covert channel [48, 31], but from our perspective, we are not worried
about covert channels, because we have attempted to prevent untrusted applications from
ever getting access to any confidential information in the first place.

It is interesting to observe that the problem of handling DNS securely for sand-
boxed applications is very similar to the problem of handling DNS securely in a firewall. In
the firewalls community this is well-known to be a tricky problem. Our current policy is
akin to what most simple packet filters do today; this policy is not perfect, but it can be
easily improved. Better would be to interpose a filtering DNS proxy between the sandboxed
application and the external DNS server. Such secure DNS proxies have been described in
the firewalls literature [23], and we are in a good position to leverage that work. There is
no fundamental reason this is not in place at the moment; we simply haven’t added it to
our prototype yet.

Our approach for handling web browsers is also very similar to policies found in
today’s packet filters. As before, this could be improved by borrowing techniques from
application-level firewalls and interposing a filtering web proxy between the sandboxed
application and the outside world.

This seems to be a general principle: techniques for handling network access by
sandboxed applications can almost always be stolen directly from the firewalls community.
This has very nice benefits, as we can benefit from the experiences of firewalls researchers,
as well as borrow pre-existing code. In general, we may be able to do even better than
firewalls can, since we can set a per-application policy on network access.

SAMPLE MODULES: Qur modules implementing this sample policy are as follows.
The basic module supplies defaults for the system calls which are easiest to analyze, and

15

takes no configuration parameters. The putenv module allows one to specify environment
variable settings for the traced application via its parameters; those environment variables
that are not explicitly mentioned are unset. The special parameter display causes the
confined application to inherit the parent’s DISPLAY. The net module allows us to restrict
TCP and UDP connections (both outgoing and incoming) by host and/or port; the default
is to disallow all connections. The path module, the most complicated one, lets one allow
or deny file access according to one or more patterns.

Because this policy is just an example, we have not gone into excruciating detail
regarding the specific policy decisions implemented in our modules.

A sample configuration file for this policy can be seen in Figure 2.2.

16

Figure 2.2: A sample configuration file.

‘basic’ sets a simple policy for core interfaces (signals, fork, ioctl, ...)
This simple policy will be refined by later modules.
basic

putenv display

putenv HOME=. TMP=. PATH=/bin:/usr/bin:/usr/ucb:/usr/local/bin:/usr/local/X11/bin
:/usr/bin/X11:/usr/contrib/bin:/usr/local/bin XAUTHORITY=./.Xauthority

LD_LIBRARY PATH=/usr/local/X11/1ib

net allow connect display
path super-deny read,write,exec */.forward */.rhosts */.klogin */.ktrust

This is the paradigm to deny absolute paths and allow relative paths.
(Of course, we will later allow selected absolute paths.)

Assumes someone will put us in a safe sandboxed dir.

path allow read,write *

path deny read,write /*

Allow certain explicit paths.

path allow read /dev/zero /dev/null /etc/metconfig /etc/nsswitch.conf /etc/hosts
/etc/resolv.conf /etc/default/init /etc/TIMEZONE /etc/magic /etc/motd
/etc/services /etc/inet/services /etc/hosts /etc/inet/hosts

Note: subtle issues here.

Make sure tcpconnect is loaded, to restrict connects!

/dev/ticotsord is the loopback equivalent of /dev/tcp, ticlts same for udp.
path allow read,write /dev/tcp /dev/udp /dev/ticotsord /dev/ticlts

Where libraries live; includes app-defaults stuff too.
path allow read /lib/* /usr/lib/#* /usr/local/X11/1ib/* /usr/local/X11R6/1ib/*
/usr/share/lib/zoneinfo/* /usr/local/lib/* /usr/openwin/lib/*

This is where binaries live; it should look a lot like your PATH.
path allow read,exec /bin/* /usr/bin/* /usr/ucb/* /usr/local/bin/*
/usr/local/X11/bin/* /usr/bin/X11/* /usr/contrib/bin/* /usr/local/bin/*

17

Chapter 3

Applications

There are many applications for the Janus tool. All are centered around the
confinement problem, but each has somewhat different operational and policy-level charac-
teristics. In this chapter, we explain how Janus can help to solve these problems, including
how we have used it to help improve the security of troublesome legacy system components
such as

e sendmail and other security-critical daemons,
e execution of Java applets, and
e Netscape and web browsing.

We will also describe how we have used Janus to enable new functionality, such as allowing
users to upload executable customization settings to an Internet service.

The primary uses of Janus can be divided into two broad categories. First, it can
be used to confine wholly untrusted applications (such as mobile code) to a subset of entirely
harmless privileges. In this case, we attempt to devise a tight enough sandbox to prevent
the applications from causing any harm whatsoever; this is the classical formulation of
confinement. Alternatively, Janus can be used to reduce the impact of future security holes
in dangerous but important system services (such as sendmail) that are not themselves
malicious but may fail to protect themselves adequately against adversarial inputs. These
services often contain subtle security holes that might let an adversary take control and
execute malicious code under the service’s good name. For these applications, we try to
limit the harm they can cause if compromised, and the techniques we use tend to look more
like compartmentalization then confinement.

In this chapter we will discuss each of these categories in turn, indicating our
experience with how well Janus has performed in each of the problem spaces.

8 Classical confinement and wholly untrusted applications

Quite often in computer security we encounter applications that are thoroughly
untrusted (or untrustworthy), and we desire some way to restrict them from causing any
harm. Perhaps the program’s author is unknown, uncertified, untrusted, or known to be

18

malicious; or perhaps the code was downloaded over an insecure link or via an untrusted
intermediary. In all these cases, we want to protect the system from the untrusted software,
and in no case should we allow the untrusted code to perform any harmful operation.

Fortunately, in many cases we can devise a very limited set of privileges that
is both sufficient for the application’s needs and limited enough to prevent deleterious
consequences. The confinement problem then is reduced to defining a cautious security
policy and expressing it in Janus’s policy language. This can require significant domain-
specific knowledge, so we describe several important examples.

8.1 Mobile code

The case of sandboxing unsigned mobile code, such as Java applet execution, is
an excellent example of this sort of usage of the Janus tool. We can set a highly restrictive
security policy (such as “no filesystem access, no network access except back to the host
where the applet originally came from, access to the X display only when this display
content is well-labeled as untrusted,” to take a well-known example) and build a relatively
straightforward Janus policy configuration file (disable all open system calls, carefully filter
connect calls, and so on).

In practice for best security we would want to use Janus as a wrapper around
the pre-existing Java VM subsystem, in a “belt-and-suspenders” configuration. This does
have one small disadvantage: it may require adding extra permissions to the Janus policy
file to accomodate the Java VM’s needs (such as access to system shared libraries and so
on). Fortunately, so long as the security policy is simple and severe, the “policy creep” will
typically be minimal.

The advantage of this approach is that we gain defense in depth. Java [41] is seeing
widespread deployment, but a number of implementation bugs [31] have started to shake
confidence in its security model. Each of these loopholes resulted in total system access for
malicious applets, which is an extremely severe failure mode. The vulnerabilities found so
far have been patched, and Java’s security features seem to be stabilizing as it matures,
but it leaves a number of fundamental concerns about the Java’s security architecture[31].
For example, the Java implementation includes many thousands of lines of security-critical
code, and yet security-critical programs of this scale are notorious for being riddled with
bugs and vulnerabilities. Janus helps us address these issues by providing a way to build
a robust second line of defense: even if the Java VM is subverted, the attacker will still
have to get past Janus’s (largely independent) protection mechanisms. Although the user
may not trust either Java or Janus alone to protect their critical systems, we argue that
the “belt-and-suspenders” combination ought to be good enough for many practical uses.

In our experience this approach to confining mobile code works reasonably well for
security policies that are simple and highly restrictive, but complexity introduces significant
implementation difficulties. Of course, complex policies are hard to get right. Also, they
are often hard to capture in a simple policy language, and Janus’s low-level system-call-
oriented policy language quickly becomes cumbersome, at best, or unworkable, at worst, for
expressing higher-level security policies. Consider the following example: “applets may send
arbitrary email messages, except when they contain obscenities or commercial solicitations.”

The problem with complex policies goes deeper than this. When using both Java

19

and Janus for security, it is difficult to assure that the policies they implement remain
coherent, especially when the underlying policies are complicated. Contributing to this
effect is a fundamental mismatch in the granularity of their mechanisms: Janus can only
implement policies that are expressible in terms of system-call filtering, while Java supports
a much richer set of application-level security semantics. Thus, many natural Java access
rules are simply not expressible (or implementable) in Janus’s model; as the security policies
we wish to enforce become more complex and more expressive, the mismatch between the
Java model and the Janus model will only become more and more glaring. In the face of
such a conflict, we have only two choices: make Janus’s policy either more permissive or
more restrictive than Java’s. Neither tactic is particularly attractive: the former reduces
the benefit of Janus as a second line of defense, whereas the latter may prevent many
legitimate applications from running. This is especially problematic, since the primary
motivation behind developing more complex security policies is usually to support more
sophisticated applications. We don’t see any good solution to this. The primary appeal
behind Janus stems from its simplicity and its focus on controlling a relatively simple, low-
level interface; any change in this philosophy would seriously impact its assurance level.
This is an important lesson: Janus is weak at implementing complex security policies.

But we are happy with the Janus model. Because of the difficulty of getting
complex policies right!, we are fundamentally suspicious of any use of Janus that relies on
complex policy specifications. We prefer an approach that is simple (and secure) to one
that is complex and expressive (and insecure).

8.2 Uploading personalized agents

Sandboxing is also an important technique for securing mobile agents and other up-
loaded code. To demonstrate the applicability of Janus in this arena, we extended TranSend
[36, 35] (a proxy-based Internet service for speeding up web browsing performance, built
on top of a general service-construction toolkit called TACC [36]) to support secure agent
uploading. TACC is designed to support scalable, highly available, massively customized
Internet services running on clusters of commodity workstations. In the TACC model, the
service developer builds “workers” to transform and aggregate data on behalf of the end
user; TranSend’s workers perform data transcoding and compression. We designed and
implemented a secure mechanism for dynamically uploading workers to a TACC-based ser-
vice such as TranSend. This enables construction of extensible services, reduces barriers to
third-party innovation, and allows us to take service customization and personalization far-
ther than previously considered. As a natural by-product, our mechanism also immediately
enables secure use of mobile agents.

Security is especially critical in such an environment. The security problem arises
because the users uploading new workers are invariably unknown and untrusted. If we
simply ran their uploaded code without further care, they would be free to execute arbitrary
code on the system, compromise its integrity, crash it at will, snoop on other users, rewire
its internal logic, and generally take total control of the service. Because Internet services

'Even simple policies often exhibit unexpected behavior, to say nothing of surprises in more complex
specifications.

20

may serve millions of users, both the exposure to risk and the potential impact of security
compromise are extremely high.

A pivotal technique in our implementation is the use of a transparent wrapper for
security. We take the untrusted worker, and apply a wrapper around it to get a nested
worker; the wrapper securely confines the underlying untrusted code in an appropriately
restricted sandbox, so the nested worker is now a secure, trustworthy, safely usable object.
The crucial aspect of this technique is transparency: the nested worker looks just like a
normal worker to the PTM, frontend, etc., so the wrapper is transparent to the rest of the
system; furthermore, the programmer need not do anything special when developing an
untrusted worker, so the security wrapper is transparent to the underlying worker.

This sort of transparency is an effective way to minimize the burden of security
and avoid excess complexity. For example, the PTM programmer doesn’t want to have to
keep track of which workers are trusted and which are not; similarly, we don’t want the
PTM to be security-critical, so we wouldn’t trust the PTM’s lists even if it were to maintain
them. Also, because our protection mechanism is transparent, to implement Perl workers
(for example) we can run the entire Perl interpreter inside the sandbox; this way, we need
not trust the correctness of the Perl interpreter, which is far too large to trust directly.

A sandboxing approach is especially attractive in this context because TACC work-
ers tend to satisfy several key properties:

e Distillers are typically stateless. (More specifically, they typically keep no state across
requests. If they do need to manage state, they will typically store it in the cache or
in the user-profile database.)

e Distillers typically require little or no interaction with the rest of the system.

e Distillers typically need little access to the underlying filesystem, network, and other
machine resources. Almost all data flow goes via stdin and stdout (or rather, their
TACC analog). Workers are largely a vehicle for expressing well-encapsulated data
transformation tasks.

Since the TACC model is roughly analogous to the Unix pipeline model—it encourages pro-
grammers to organize their computation into a series of small, modular, stateless filters that
implement some sort of transformation on the data—we see that these desirable properties
are largely a consequence of the TACC model. Nonetheless, we expect that they would also
apply to many other programming models for mobile agents.

In short, the approach of wrapping an untrusted object with a secure sandbox
tool has many compelling advantages. We found Janus to be very well-suited for this task:
it allowed us to protect arbitrary workers, no matter what language they were written in
(including C, Perl, Java) at no extra cost; and it allowed us to keep the size and com-
plexity of the trusted computing base down, thereby increasing the assurance level of our
implementation.

There are some downsides to sandboxing. Sandboxing typically is poorly suited
to controlling communications-oriented interaction, and this problem is especially severe
with Janus. In the face of heavy use of network-based fine-grained interaction, we can
only control the initial access to the underlying network medium—for instance, we can

21

specify which (host,port) pairs the untrusted worker is allowed to connect to—but we have
essentially no control over the content of the messages. In other words, Janus gives us only
coarse-grained control over worker-system interactions. Since we didn’t need fine-grained
control over network communications, these disadvantages didn’t affect us much, but it is
conceivable that they might be more problematic in other settings.

Re-using existing Janus code made implementation of sandboxing relatively easy.
Not many changes to Janus were needed: we added extra support to Janus for mediating the
sendto system call, for controlling some setsockopt and getsockopt features that TACC
used, and for allowing IP multicast. Apart from these minor, well-confined modifications,
though, we used Janus as is. The hardest part was picking an appropriate security policy.

We derived our security policy by initially prohibiting access to all interesting
machine resources and watching what broke when workers run under this incomplete envi-
ronment. This gave us a fairly complete list of the resources to which workers (and worker
stubs) need access. We went through this list and evaluated each one to see whether allow-
ing it would open any new security vulnerabilities. Finally, with a list of minimal necessary
permissions (verified safe and refined to respect the principle of least privilege) in hand, we
enabled them in the Janus policy configuration file.

To summarize the policy, we allow:

e Network access to a few specific locations: untrusted workers may contact two
local trusted high-security DNS servers, the Harvest cache, the PTM, and multicast
groups corresponding to the monitor and the PTM. These permissions are specified
at a (host,port) level of granularity.

e Filesystem access to a number of files: local configuration files, libraries, TranSend
executables, TranSend’s configuration file, and the area where the executables for
uploaded workers live. These permissions are exclusively limited to read access (with
a few specific exceptions for write access, e.g., /dev/null).

e Hand-screened OS system calls that perform basic, required, roughly risk-free
functionality. These primarily consist of system calls that can be used to modify
one’s own sandbox but cannot affect anything outside the sandbox. Most of them are
necessary for program execution, to support dynamically linking in shared libraries,
managing signal handlers, and similar tasks. This is built from core Janus code that
has remained stable for over a year or more.

This policy also ensures per-user isolation, which helps protect mutually distrusting users
from each other so one user can’t assail the integrity of another user’s web browsing ex-
perience. Selection and verification of this policy was made easier because it is primarily
a refinement of a policy developed earlier (see Section 7) for confining generic mobile code
for web browsing. We gave a detailed argument that this policy is safe in [68]; see that
document for more details.

We also found it important to develop several other mechanisms to help protect
the security of the system, including extensive auditing for problem tracing, simple “trusted
path” techniques [32] to deter Trojan horses and viruses, and human-factors engineering

22

to help prevent accidental security lapses caused by configuration and other administra-
tion errors. However, Janus remained the bedrock of our security architecture; the other
components were relatively minor.

In short, Janus performed admirably well at this task. It adapted well: although
it was not initially designed for this application, only minor extensions to the code were
needed. Our experience with implementing secure agent uploading helped convince us that
Janus is useful as a general-purpose tool for implementing confinement and sandboxing
mechanisms.

8.3 Programming contests

We imagine that Janus might also be appropriate for a programming contest en-
vironment in which contestants must have very restricted access to the underlying system.
However, we have no experience with this configuration, so we can only suggest it as a
potential area for further work.

9 Compartmented systems and partially untrusted applica-
tions

Next we discuss the case of partially untrusted applications. Classically, con-
finement is intended for wholly untrusted code; here we show how to apply confinement
techniques to protect a system that includes partially untrusted code. The idea is to parti-
tion the system into a number of non-interacting subsystems, one for each potential point
of compromise, and then wall them off from each other. This way if one subsystem is
penetrated, at least the rest of the system stands a chance of remaining secure. This ap-
proach is analogous to the concept of “watertight compartments” in maritime construction,
where each compartment is separated from the others by a very strong bulkhead. Such a
containment strategy enhances robustness in ship design, and it does likewise for system
security.

9.1 Helper applications for web browsing

One example of securing partially untrusted applications with Janus can be found
in helper applications for web browsers. Web browsers and .mailcap files make it convenient
for users to view information in a wide variety of formats by demultiplexing documents to
helper applications based on the document format. For example, when a user downloads
a Postscript document from a remote network site, it may be automatically handled by
ghostview.

The helper applications these browsers rely upon are security-critical, as they
handle unauthenticated data from the network, but the implementations are not particularly
trustworthy themselves. Since that downloaded data could be under adversarial control, it
is completely untrustworthy. We are concerned that an adversary could send malicious data
that subverts the document viewer (through some unspecified security bug or misfeature),
compromising the user’s security. Older versions of ghostscript, for example, allowed

23

maliciously generated documents to spawn processes and to read or write an unsuspecting
user’s files [20, 26, 27, 66, 72]. In general, the helper applications are generally too big and
complex to be bug-free, and large bloated programs are notoriously insecure. (For instance,
ghostscript is more than 60,000 lines of C; and mpeg_play is more than 20,000 lines long.)
Also, many helper programs were initially envisioned as a viewer for a friendly user and
were not designed with adversarial inputs in mind. Furthermore, ghostscript implements
a full programming language, with complete access to the filesystem; many other helper
applications are also very general. Finally, careless coding (such as using gets, strcpy,
or sprintf without protecting against buffer overflow) may allow remote adversaries to
totally subvert the helper application and replace it with an arbitrary executable that has
full access to the machine. In short, there are significant security concerns.

As a result, we consider helper applications largely untrusted, and we would like to
place them outside the host’s trust perimeter. We propose to reduce the risk of a security
breach by creating a secure restricted environment to contain the untrusted programs,
so that even if a remote adversary gains total control over the helper application, the
adversary cannot harm the rest of the system. This ensures that the damage a compromised
application can cause is drastically curtailed by the restricted environment in which it
executes. In contrast, an unprotected Unix application that is compromised will have all
the privileges of the account from which it is running, which is unacceptable, because in
practice that will typically lead to compromise of the whole system.

In short, we take the view that vulnerabilities in these complex applications are a
fait accompli which we must accept and live with as best as possible. Rather than trying
to prevent such compromises, we pessimistically assume that these programs will exhibit
adversarial behavior at the most inconvenient times possible, so we focus on preventing
harmful effects. We institute severe restrictions on what privilege the applications may
obtain, and scrutinize their actions closely.

With this philosophy firmly in place, it should be clear how confinement techniques
can be used to good effect. We advocate the use of Janus to help secure unwieldy helper
applications, based on the security policies applied to mobile code above.

Our measurements indicate that the use of Janus imposes virtually no performance
penalty on these applications [40]. The negligible performance impact can be attributed
to the unintrusive nature of our implementation. Of course, all computations and memory
references that do not involve the OS will execute at full speed, so system calls can be
the only source of performance overhead. System calls are already so time-consuming that
the additional overhead of the Janus filtering is often relatively insignificant compared to
the total process execution time. Furthermore, most of the heavily used system calls (such
as read and write) require no access checks and therefore run at full speed. By staying
out of the application’s way and optimizing for the common case, we have allowed typical
applications to run with negligible performance overhead.

9.2 MIME-aware mail agents

Nowadays many of the most popular mail agents are MIME-aware, which means
that they can interpret many formats of data. Such support is almost always implemented
by use of specialized helper applications, one for each data format that is too complex to

24

implement in the mailer itself. These are usually the same helper applications found in web
browsers; for instance, Postscript attachments might be displayed by invoking ghostview
on the data, and GIF images by executing xv. Of course, email can come from arbitrary
sources, and the data should be considered untrusted. This presents a serious problem,
since many of the helper applications are too complex to handle adversarial data securely.

So it should be clear that the solution to this problem is essentially the same as
that for web browser helper applications, above. As before, we could edit the .mailcap
configuration file to replace each helper application with a Janus-wrapped version. In the
case of MIME-aware mailers, one small improvement is possible, since mailers typically
execute the metamail program and let it dispatch the data to the appropriate helper ap-
plication. Therefore, we may simply wrap the metamail application; Janus will confine
not only metamail but also all the helper applications it spawns. Wrapping metamail is
probably preferable in any case, since it is rather poorly written, and has been known to
have security holes in the past [22, 29].

9.3 Protected web browsing

The arguments that leave us suspicious of helper applications also apply to web
browsers: in both cases, large complex programs are interpreting data that may be under
adversarial control, and this indicates a propensity for security holes. For example, a buffer
overrun bug was found in an earlier version of the Netscape browser [30].

A natural extension of the work on confining helper applications involves running
web browsers under the Janus secure environment. The recursive tracing of child processes
ensures that running a browser under Janus will protect all spawned helper applications as
well.

The main challenge is that browsers legitimately require many more privileges;
for instance, most manage configuration files, data caches, long-term state stored in the
filesystem, and make numerous network connections. Nonetheless, these can still be confined
to a relatively small “browsing” subsystem.

We have implemented a simple prototype Janus configuration intended to protect
the integrity of the rest of the system from a potentially compromised browser. We allow the
browser (Netscape Navigator, in our tests) full access to everything under $HOME/ .netscape.
File downloads are restricted to a special “downloads” sandbox directory; after downloading
an interesting file, it is the user’s responsibility to check it over for safety and copy it out of
the sandbox to its end destination. The browser is run inside a filtering X proxy (Xnest) to
prevent it from manipulating other windows on the same X display. Using Xnest has some
user-interface implications—it runs inside another window, and one cannot cut-and-paste
between Netscape and other X applications—but these limitations could be corrected by
moving to a better X11 proxy (e.g. [44]).

The resulting prototype works well enough, in our experience, for day-to-day use,
so long as we remember not to try to save anything outside the special “downloads” direc-
tory. However, our prototype has seen only limited testing, because Janus is not available
on our preferred platform (Linux). Still, our experience suggests that a production-quality
system could probably be built with little additional effort.

25

9.4 Sendmail

The sendmail mail agent is infamous within the security community as a favorite
point of attack for hackers. It was one of the security holes exploited by the 1988 Internet
Worm; and in years since, various versions have had dozens of other security vulnerabilities
discovered and exploited. Nonetheless, sendmail remains the de facto deployed standard
for Internet mail communications: one 1996 survey found that “80% of the reachable SMTP
servers—more than half a million IP addresses—were running sendmail” and “no SMTP
package other than sendmail is running on more than 2% of the reachable SMTP servers.”
In this sense, sendmail represents a trial-by-fire: if a security mechanism can help improve
sendmail’s security, that mechanism is potentially interesting.

To give the flavor of a typical sendmail hole and motivate our approach to the
problem, we first describe the vulnerability (also known as “the wizard hole”) exploited by
the 1988 Internet Worm. 2

The wizard mode feature was a special privileged debugging mode; network access
to the privileged mode was protected by a password specified in the configuration file.
To avoid parsing the configuration file every time sendmail starts up, as an optimization
sendmail would save a pre-parsed frozen configuration. This was implemented by merely
writing out the entire bss and heap segments to a file. (Recall that the bss segment holds
those C program variables that aren’t explicitly initialized in the source code; the OS zeroes
out that segment at program loading time.) Therefore, the sendmail implementor merely
had to ensure that all parsed data be contained in the bss or heap segment for the frozen
configuration optimization to work.

However, one implementation of sendmail wizard mode made the mistake of
declaring the pointer to the parsed password as

char *wizpw = NULL;

in the source (instead of “char *wizpw;”), which meant that it was explicitly initialized
and thus contained in the data segment. Therefore, the parsed password was not written
to the frozen file, and when sendmail was started from a frozen configuration, it acted as
though no protective password was enabled: anyone could connect to the SMTP port, begin
wizard mode, and get privileged access to an interactive debugging shell without needing a
password. The moral is that complex code (such as that found in sendmail) is subtle and
hard to get right; no matter how many times we test our applications, we can never be sure
whether there is one more hidden bug lurking in the code.

Certainly sendmail’s status as legacy code has contributed (at least in part) to its
security problems. Sendmail was adopted as a de facto standard at a time when security
was less of a concern. As a result, the code is modular and well-engineered, but the module
boundaries are not based on a security-oriented decomposition; instead, security-critical
code can be found throughout the program. This certainly contributes at least in part to
sendmail’s history of longstanding security problems; but it is not the whole story.

A much more important factor is sendmail’s status as an evolving legacy appli-
cation. Since sendmail’s early days, much has changed. As was already mentioned, the

2Thanks to Steve Bellovin for this war story [9].

26

threat model changed during sendmail’s lifetime: where the net was once comprised of
researchers, today it is teeming with corporations (with assets that are important to pro-
tect) and hackers (with the skill and will to mount sophisticated attacks). More subtly, the
underlying infrastructure has also changed. For instance, a hostname query used to be a
lookup in a local database (/etc/hosts), which thus had no security implications. How-
ever, as the net grew, systems moved to a distributed name service (DNS) where hostname
queries involved a remote network lookup and thus could not be trusted. But this change
was transparent to sendmail. All that changed was the semantics of some library functions,
but that was enough: sendmail code that was once secure suddenly became a potential
avenue of attack. And in fact, at least one security hole can be directly attributed to this
silent evolution of the underlying infrastructure. How can anyone blame sendmail for these
security problems, when the semantics of the programming model changed out from under
it invisibly? Clearly this class of security failures is hard to anticipate and protect against
at design time.

Because of these factors, large numbers of security vulnerabilities have been found
in sendmail over the years, and the Unix community has been forced into a plug-and-patch
methodology, where implementors end up fixing bugs one at a time as they appear. This
has been a losing battle [1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 21]. Eric Allman (sendmail’s
creator) has worked extremely hard to make the best of this unpalatable situation, but this
is a fundamentally difficult task.

In short, the history of sendmail is checkered with serious security problems. Be-
cause sendmail handles email that could potentially come from anywhere on the net, often
the effect of a new sendmail hole is an extremely broad exposure: attacks could come from
any of the millions of Internet users. Furthermore, in most cases penetration of sendmail
would compromise the entire system it runs on, even though sendmail legitimately needs
access only to a very small subset of the system.

These crucial facts dictate our approach to the problem. We consider it prudent to
assume that sendmail may be invisibly penetrated at any time by parties unknown. Rather
than trying to limit the probability of compromise, we focus on reducing the harmful effects
of a potential compromise, and in this way aim to limit and manage the risks as best as
possible. Our solution, then, uses a custom Janus configuration to confine sendmail in a
minimalist environment, under the assumption that it may be acting with hostile intent at
any time; we allow sendmail access only to those parts of the system legitimately necessary
for mail delivery, and no more. Sendmail still runs as root, but many dangerous operations
are prevented by Janus’s system-call filtering.

This allows us to drastically limit the impact of a future sendmail compromise on
the rest of the system. Of course, in the event that sendmail is penetrated, the integrity
and confidentiality of the mail subsystem will be compromised—Janus cannot help in that
regard—Dbut at least we have some assurance that the rest of the system will not fall with
it.

Our security policy for sendmail is our most complicated policy developed to date.
First, we allow unlimited access to the mail queue (where mail waiting to be processed is
stored) and to the mail spool directory tree (where users’ mail files are kept). Second, we
allow several forms of network access: sendmail may bind to the SMTP port and may

27

connect to SMTP ports on other hosts. Also, sendmail is allowed to perform DNS queries.
(Our approach involves allowing sending to UDP port 53 and binding to high-numbered
local UDP sockets.) Third, we allow read-only access to certain relevant configuration
files (e.g. /etc/sendmail.cf). Fourth, we also allow read-only access to /etc/passwd, so
that sendmail may extract GECOS information. (Note that this is potentially dangerous
if shadow passwords are not in use, since a compromised sendmail could leak encrypted
password entries to a dictionary search engine; for now, we insist that the site use shadow
passwords, since sendmail very strongly wants other information contained in the password
file.) Finally, any other access not explicitly allowed in the list above is prohibited. (For
example, in our prototype, sendmail cannot access users’ .forward files; this policy could
be easily changed with a slight modification to the configuration file.)

This draws a tight (though admittedly somewhat complicated) boundary around
sendmail. The key point is that sendmail is only permitted access to the mail subsystem,
so that a compromised sendmail daemon cannot adversely affect the other subsystems.
This is just the principle of least privilege applied to mail handling. Because we are using
the Janus tool, our boundaries are specified in terms of the interface between sendmail and
the OS: namely, as a list of the system calls to be allowed.

Our prototype successfully protects stock Solaris 2.5.1’s sendmail version SMI-
8.6.2 We disabled NIS, because of its poor security properties. We have not performed
extensive stress-testing of all sendmail functionality; however, we have informally verified
that it works for mail transport, forwarding, and delivery.*

For concreteness, we describe the harmful actions a compromised sendmail can
take when our security protection is in force®. It can selectively prevent messages from
reaching their destination, or delete messages from the mail spool files. It can perform
denial of service attacks on SMTP or DNS servers, but then anyone with network access
can already do that. It could snoop on all email passing through the site, but of course,
anyone with a sniffer on your local network can often do the same. It could forge email, or
modify email in transit through the site, but then, anyone already can forge email. So in
sum the possible harmful effects are very limited, and most are already a threat anyway.
This limited worst-case impact is a sign that we have successfully compartmentalized the
mail subsystem.

This form of protection for sendmail can have huge security benefits. In recent
years, sendmail has been the source of a tremendous number of security holes, and we

3In future work we will port the custom configuration to work with Eric Allman’s sendmail version 8.8.8.

“We expect that our prototype may deny certain obscure but legitimate operations from sendmail.
However, this is from an inadvertent lack of knowledge of every corner of sendmail functionality, rather
than from any fundamental limitation in our technique. For instance, we know that currently our security
policy does not make .forward files available to sendmail, though that would be very easy to change. In
other words, this is an indication of the immaturity of our sendmail prototype, rather than a fundamental
flaw in our approach.

5Tt is hard to guarantee with 100% reliability that this list is complete, because the list of harmful actions
is given at a different level of abstraction than the policy (system calls vs. application semantics). Still,
this problem is no more acute for Janus than it is for firewalls, and we can make a pretty good assessment
of the risks. The basic approach is very simple: for each policy rule which allows some set of actions, we
estimate what a malicious application could do with those actions. Fortunately, the set of allowed actions
in our policy for sendmail is quite small, and it is this property which makes our task feasible.

28

can be sure that there will be more in the future. Normally, an attacker who successfully
compromises sendmail with one of these holes will have the run of the system. The benefit
of our security mechanism is that the successful attacker will not be able to corrupt the rest
of the system—only the mail subsystem will be at risk. In other words, we have added a
robust second line of defense that prevents catastrophic security failures.

One attractive property of this direction to securing sendmail is that it comple-
ments other approaches nicely. We know that, at worst, even if Janus fails to do its job,
our configuration will be no less secure than running without Janus; of course, in practice
we do expect Janus to reduce risks significantly. Furthermore, even if other techniques
are developed to reduce the incidence of bugs in sendmail (e.g. perhaps through careful
auditing, code restructuring, formal methods, or other as-yet-unidentified methods), they
compose nicely with Janus so that one could get the best of both worlds.

Our customized solution based on Janus has a number of advantages. First, de-
velopment time was relatively small (especially as compared to the difficulty of securing
sendmail by traditional means). We were able to re-use the Janus tool with only a few
modifications needed. Second, the solution’s complexity is very modest. Third, our solution
with Janus provides a way to introduce a security-oriented code decomposition, where all
security-critical code is collected in a small module, to legacy code not originally structured
in this way. Finally, because of its simplicity and orthogonality, assurance is likely to be
quite high; certainly there are no guarantees, but our chance of correctness is significantly
higher than with just the current plug-and-patch methodology for sendmail. In short, the
sandboxing approach yields a solid high-assurance tool for securing sendmail; Janus is a
good fit for this application.

9.5 Other system daemons

Just as Janus was used to secure sendmail in case of penetration, we expect
that other security-critical system daemons could be protected in a similar way. Potential
candidates include httpd (a web server), bind, inetd, etc.

Securing a web server would perhaps be the most compelling application. Like
sendmail, web servers are well-known to be very high security risks, yet by their very nature
web servers typically require only very limited access to the system. inetd also makes for
an interesting possibility, because it usually spawns many other net daemons that also need
protection. Since Janus recursively confines all children of a confined process, wrapping
inetd in a Janus wrapper would be an attractive technique to secure many network services
at once.

Our expectation is that Janus could be used as a general-purpose tool to help
manage the risk of security vulnerabilities in many critical network daemons. However, we
do not have implementation experience with such a configuration, so we can only suggest
this as a promising area for further study.

9.6 CGI scripts

We speculate that Janus may prove useful at sandboxing user-written CGI scripts
at sensitive sites (e.g. Internet service providers). As a system administrator, one of the

29

biggest risks with allowing users to write their own CGI scripts is that one of the scripts
may inadvertently open up a hole that allows remote adversaries full access to the site. Of
course, most users are neither very experienced at writing security-critical programs, nor
very knowledgeable about security issues, so this is a real concern. Running all user-written
CGI scripts inside a sandbox enforced by Janus might help alleviate some of the security
concerns. However, we have no experience with this, so we will leave it to other researchers
to explore the space of possible solutions.

10 Summary

This section enumerated many appealing applications for Janus, and gave im-
plementation experience with a number of them. These includes providing security for
mobile code and mobile agents, securing legacy systems, and protecting ourselves from fu-
ture failures of critical system daemons such as sendmail. This illustrates the potential
benefits from confinement-based mechanisms, shows that our basic approach is workable,
and demonstrates the success of Janus as a general-purpose tool for confinement.

30

Chapter 4

OS support for Janus

Janus cannot exist in a vacuum. The Janus architecture relies heavily on the
ability to mediate all interactions between the sandboxed application and its environment,
and these mediation facilities can only come from the operating system. Therefore, we
require some level of support from the OS if Janus is to do its job.

It is then natural to wonder exactly what level of OS support is required. Operating
system designers may wish to decide whether to implement special support for Janus—what
are the costs? what tack do current commodity OS’s take? is it worth the effort?—and if so,
which techniques are appropriate? In this chapter, we explore various levels of OS support,
evaluate their value, examine the tradeoffs, and conclude with a recommended approach for
operating system architects.

We argue that our research provides strong evidence that the operating system
designer can support Janus with little additional cost, if some care is taken during the
design of the system’s process-tracing facility. This means that OS designers can offer
significant security benefits to the user at little extra cost. We describe here our experience
with implementing Janus on top of several existing process-tracing facilities, and develop a
list of specific features that Janus needs from the OS to work well. Roughly speaking, the
core requirement is the ability to implement system-call interposition; with that proviso, we
can implement the Janus architecture, and the corresponding security benefits will accrue.
Fortunately, most operating systems already implement some form of process tracing, and
process tracing takes you most of the way towards system-call interposition, so not much
extra functionality is needed from the OS kernel. There are a few subtle traps for the
unwary, but our work enables us to offer a set of guidelines that should help OS builders
negotiate the pitfalls with ease. Therefore, we claim that folks who build new operating
systems should endeavor to support the Janus security tool.

This chapter is organized as follows. First, we argue that, to be viable, Janus
needs some sort of support for system-call interposition from the operating system. Next,
we describe three existing process-tracing facilities, analyze what functionality Janus needs
to extract from them, and use that analysis to provide a detailed evaluation of each of the
three tracing facilities. After that, we describe a tracing primitive that we designed and
implemented in Linux, and describe what went wrong with that effort. Finally, we present
a list of guidelines on the design of tracing primitives that summarize many of the lessons

31

we learned from our work.
Implementors should also see [39] for more insights and implementation experience
regarding the design of interposition mechanisms.

11 Theory and foundations

Janus’s goal is quite aggressive: it must transparently protect a large legacy sys-
tem from an untrusted pre-existing application. Recall that Janus is unprivileged, which
means that it cannot—by itself—control the untrusted application’s interactions with its
environment. In short, Janus requires outside help to accomplish this task. However, most
other system entities will not provide any help. Neither the untrusted application nor its
trusted environment are likely to provide special support for Janus. In practice, they al-
most always consist of legacy code, and usually will not even be aware of Janus: Janus must
operate transparently without assistance from them. The only remaining entity Janus can
look to for help is the operating system.

This argument demonstrates that Janus needs OS support to be viable. Specifi-
cally, we see two crucial requirements:

1. Complete mediation: The operating system must have the power to mediate all
potentially unsafe interactions between the untrusted application and its environment,
and

2. Extensibility: The operating system must allow us to further limit the set of allowed
operations. (The OS need not allow us to replace its pre-existing access controls, only
to supplement them with additional checks.)

These two properties are sufficient to build arbitrarily powerful user-level confinement mech-
anisms.

The requirement for complete mediation essentially says that the OS must
support some form of protection. In order to mediate interactions between an application
and its environment, the OS must first be able to distinguish between applications and their
environments: we require a well-defined boundary separating an application from all other
system components. Furthermore, we insist that the boundary be drawn so that the OS
controls (or can control) all interactions across that boundary. In today’s operating systems,
an application is most naturally viewed as a process along with its associated address space.
In this model, applications cannot interfere with each other (or with the OS kernel) except
by invoking an operating system primitive.

Most modern operating systems that are even minimally security-conscious im-
plement process-level protection, and so complete mediation should essentially come for
free. One important exception is Microsoft’s Windows 95 (but not Windows NT), which
provides no protection: all applications have full access to all of the machine’s memory as
well as unmediated access to most of the hardware. In other words, Windows 95 fails the
first requirement on the OS. In principle one might be to work around this by limiting the
untrusted application’s access to memory and hardware with software fault isolation (SFI)
[71], but it is not clear how effective SFI+Janus would be in practice.

32

The second requirement, extensibility, means that a user-level process, such as
Janus, must be able to extend the operating system’s default reference monitor in a way
that makes it more restrictive. (A reference monitor is an abstraction of the mechanisms
the OS uses to validate applications’ requests and enforce protection [32].) This is most
naturally accomplished through interposition, where Janus gets to monitor and filter the
application’s requests to the operating system.

The most straightforward way to implement interposition is by a callback: each
time the untrusted application invokes a OS primitive, Janus is notified and offered the
chance to veto (or cancel) unsafe requests. In most of today’s operating systems, the sole
interface to OS primitives is through “system calls”'; therefore, it suffices to lend Janus the
ability to monitor and filter system calls issued by untrusted applications.

Of course, for security reasons, access by unprivileged applications to system-
call monitoring/filtering functionality should be carefully controlled and supervised. For
instance, Janus should not be allowed to extend the OS’s reference monitor in a way that
makes it more permissive.

In the remainder of this section, we explore the available OS support for system-call
interposition in detail.

12 Real implementations

Most operating systems already offer some kind of support for monitoring the
system calls invoked by a target process, in the form of a process-tracing facility. Though
these facilities were not intended for use as a system-call interposition mechanism, often
they can be adapted to this end, if they are sufficiently general. But not all process-tracing
facilities are made equal—they span a whole range of sophistication and flexibility, and
not all are adequate for system-call interposition. We list here three notable approaches,
ordered from the least powerful to the most powerful:

e ptrace is a very common (though minimal) primitive available in most Unix-based
operating systems; it is widely used in debugging tools such as gdb and strace.

e Solaris 2.4’s /proc filesystem offers very flexible support for fine-grained user-level
system-call tracing, with some additional capabilities over ptrace. Solaris maintains
backwards-compatibility with the older ptrace interface by emulating ptrace calls
using the /proc filesystem’s newer, more powerful functionality.

e SLIC [39] is a technique for building extensible operating systems via interposition on
the system-call interface: instead of receiving a callback from the kernel, with SLIC one
may download trusted code into the kernel to be executed before each system call is
processed. SLIC offers a powerful OS-independent toolkit to ease the implementation
of system-call interposition and free implementors from the painful aspects of writing
kernel code. As such, SLIC can be easily used to implement the ptrace or /proc

!Still, one must actually verify that there are no other unrestricted ways—such as a divide-by-zero
hardware trap—to invoke OS functionality.

33

primitives, or can be used to deploy an efficient, customized solution targeted to
Janus’s needs.

We listed the approaches in order of their expressive power, but this ordering also reflects
the relative costs? of the three primitives, from least expensive to most costly. It behooves us
to pick the least powerful (and thus least costly) primitive that will suffice. We concentrate
our attention on these three levels of OS support, with an eye towards how well they meet
the needs of Janus.

12.1 Which features Janus needs

First, we examine what OS support Janus needs to be effective. We list the
minimum required capabilities here:

e Complete monitoring powers: We group several related requirements into a single
category. First, Janus must be notified whenever the untrusted application attempts
to execute a system call. Furthermore, Janus needs to be able to view the arguments
of the system call (and to examine the application’s data space, if any arguments live
there). Last, Janus must be able to view the return value of the system call. These
are all essential if Janus is to monitor the untrusted application effectively.

All three process-tracing facilities support this fully. Both the ptrace and /proc
interfaces implement a callback from the kernel to the tracing process. ptrace uses
the Unix signals facility: at each tracing event, the tracee blocks with a SIGTRAP
signal, and the tracer may detect this by calling wait. /proc uses ioctls on a special
file under the /proc filesystem: the tracer issues an ioctl that blocks until a tracing
event is available at the tracee. SLIC offers many different ways of supporting this
requirement.

e Fine-grained control: Janus should be able to specify which system calls to receive
a callback on and which system calls should be allowed to execute without delay. This
greatly improves performance, because we can apply the following major optimization.
We trace only open system calls, and allow read and write to execute without tracing;
a similar technique can be applied to a number of other system calls. This optimization
lets read and write calls, a common case, proceed at full speed, while still safely
controlling all file accesses.

Only the /proc filesystem and SLIC support this requirement. In fact, SLIC goes even
further, and lets us optimize the performance of Janus by downloading some security
checks directly into the kernel.

e Ability to prevent selected system-call invocations from executing: Merely
monitoring the actions of the untrusted application is not enough—Janus also needs
to be able to take forceful action against mis-behaving applications. In particular,
when the untrusted application calls a system call with arguments that are potentially

*We picture cost being measured in some natural measure of interest to the OS designer, such as the
amount of code one must write to implement the primitive, or the amount of interdependencies with the
rest of the kernel the primitive introduces.

34

unsafe—e.g. open("/etc/passwd",...)—Janus must be able to abort the system-
call request and prevent its execution.

Only the /proc filesystem and SLIC support this requirement; ptrace is insufficient.

e Follow all children of the traced application if it forks: Clearly Janus’s efforts
would be for naught if a malicious application could merely fork and let its child
execute unmonitored. Therefore, the operating system must preserve tracing across
forks.

The proc and SLIC primitives do support this. In contrast, ptrace does not provide
3

adequate support for this requirement, due to subtle technical issues”.
These features are the bare minimum required to support Janus.
Next, we list a number of capabilities that would be convenient, though not strictly
necessary:

e Multiplexing: The ability to monitor many traced processes at once is useful. In
our first naive implementation, Janus forked each time the untrusted application did,
to maintain the invariant that each Janus process only monitors one traced process.
However, this causes process table bloat. Worse, it incurs a large penalty in frequent
context switches, and frustrates OS attempts to take advantage of locality. These
costs can be mitigated by slightly increasing the complexity of Janus so one Janus
process can handle many traced processes at once. Of course, the operating system
must support multiplexing for traced processes if we are to achieve this improvement
in performance.

On the other hand, multiplexing does have some tradeoffs. In particular, adding
multiplexing to Janus adds complexity, which in turn decreases its assurance level
somewhat, so multiplexing might not be appropriate in all environments.

ptrace, /proc, and SLIC all support multiplexing.

e Kill on tracer-death: With many tracing subsystems, if the tracer dies unexpectedly
(perhaps because of a bug in its code), the traced process is no longer traced and
thereafter executes without interruption. This is clearly an undesirable situation;
we would prefer to be able to set a flag so that the traced process (the untrusted
application) is killed if the tracer dies unexpectedly. This capability increases the
robustness of Janus in case the implementation has minor bugs.

3Note that, with ptrace, one can observe when the application has forked. By checking the return value
from the fork system call, one can deduce the process id of the child. At this point, one could enable tracing
on the child. However, this approach fails due to a serious race condition. By the time we enable tracing on
the child, it may already be too late—the child may have already executed an unsafe system call.

The strace(1) utility attempts to remedy this with a messy trick. When strace observes that the
tracee is calling fork, strace sets a breakpoint at the next instruction after the fork invocation, so that
both the parent and the child halt temporarily after the fork returns. Then strace enables tracing on
the child, removes the breakpoint, and resumes execution of both processes. However, this is a painful and
unreliable hack. It introduces complexity, race conditions, and failure modes that are unacceptable for a
security-critical program such as Janus, and so we reject this approach.

35

Bugs in the OS are also a concern. One bug has recently surfaced in many Unix
kernels whereby one process can bypass the usual protection checks and kill any other
process. In this case, a traced program might be able to kill the tracer, which would
be a serious problem if the traced program subsequently continued to run untraced.
Patches to fix the bug are available, but there will always be legacy systems with old
versions of the kernel.

More problematically, this brings up the possibility that other such bugs may be found
in the future (perhaps even by the hacker community before they are found in the
security community). Of course Janus cannot guarantee security in case the OS kernel
is buggy, but it seems valuable to add protection against this particular class of bugs.
In the interests of robustness, “kill on tracer-death” seems important.

/proc supports this feature; ptrace unfortunately does not. The SLIC prototype in
[39] does not currently implement this feature [38].

Setuid executables forbidden: We want to prevent the untrusted application from
raising its privilege level. In Unix, one gains privilege by executing a setuid (or setgid)
program; therefore, it is important that Janus be able to deny the execution of setuid
programs (and setgid programs) by traced processes.

If the OS does not support this feature, we can admittedly work around the omission
at some cost in complexity and assurance, as follows. First, whenever an untrusted
application attempts to exec a new program, Janus must check that the referenced
program is not a setuid (or setgid) executable. This leaves open a race condition: a
local process could change permissions on the file (or, more likely, make a symbolic
link pointing to a pre-existing setuid executable, and move the symlink around) be-
tween the time when Janus checks the program’s permissions and when the OS kernel
executes the exec system call. At first glance, this race condition does not seem to
affect security. In the Janus threat model, we assume that the traced untrusted appli-
cation does not have any local untraced co-conspirators. However, there is a subtlety:
the untrusted application might fork and try to exploit the race condition by using
the child to change a symlink while the parent exec’s the symlink. Therefore, if the
OS doesn’t prevent execution of setuid executables directly, Janus would also have to
prevent creation of links and modifications to file permissions that would enable this
race condition.

We see that Janus can work around a lack of OS support for forbidding access to setuid
executables, but the workaround is complex, which makes it potentially susceptible
to security holes. In short, the setuid check rightfully belongs in the kernel where
it can be made atomic. Therefore, it would be extremely useful for the OS tracing
subsystem to support this capability in the kernel.

All three tracing subsystems provide this support.

Flexible error codes: In practice, Janus will often deny many system calls from
well-intentioned non-malicious applications, merely because the application unwit-
tingly tried to overstep its bounds. In such cases, we want the application to recover
gracefully and continue execution. Most applications do, if we simply abort execution

36

of the system call. However, some applications have problems if the aborted system
call returns an error code other than EPERM. For instance, on Solaris aborted system
calls return EINTR. (The EINTR return code was originally intended for system calls
that are interrupted by a signal and should be restarted by the application.) This
occasionally causes problems: applications that dutifully restart such system calls will
get into an infinite loop, each time retrying the same system call and each time having
it denied by Janus. EPERM is a more natural error code that reflects the true cause of
the failure (namely, a permission check failed) and thus causes fewer problems. There-
fore, to best handle the widest possible array of applications, it would be convenient
if the operating system allowed denied system calls to return EPERM.

ptrace does not provide the ability to abort system calls, and so control over the
error code is moot. SLIC easily handles EPERM return codes for aborted system calls.
As for the /proc tracing subsystem, our original implementation using /proc did not
have control over the error code returned; however, it is now possible to force a EPERM
return code under the /proc filesystem by using a special trick.

These optional features enhance the performance, assurance, and transparency of Janus.

Lest we lose all sense of perspective in a maze of wish lists and required features, we
should take care not to forget the original reason for enumerating the desired OS support.
The intent is to analyze the suitability of the three primary tracing primitives (ptrace,
/proc, and SLIC) with a two-step process: first, decide what functionality we need from
a good tracing primitive, and then evaluate how well the available primitives meet those
needs. Having now completed the first step in great detail, we move on to evaluate the
existing primitives against this checklist.

12.2 Evaluating SLIC

As the most powerful mechanism, SLIC is the easiest to evaluate. The SLIC primi-
tive can support all of the capabilities we need and all of the convenient features we want
except “kill on tracer-death.” Even better, SLIC’s powerful features make it easy to im-
plement the support Janus needs with a minimum of fuss and without much additional
complexity; simplicity is a compelling advantage, because it helps wards off bugs in Janus,
thus maximizing the chances that Janus does correctly confine untrusted code.

Moreover, SLIC can help with security and performance by moving permission
checks into the kernel when appropriate. File permissions, for example, can be checked in
the kernel to avoid race conditions and to avoid duplicating the existing file permissions
kernel code.

Duplicating the kernel’s standard file permission checks in user-space is dangerous:
preventing race conditions can be tricky, and it is difficult to ensure consistency between
the kernel and user-space implementations. In some cases, duplication is impossible: for
instance, user-space code cannot get direct access to inode data and so some checks are
impossible. Therefore, we feel that duplication of access control checks in both kernel and
user-level code is best avoided wherever possible, and SLIC makes it possible to avoid this
type of duplication.

37

Security is not the only consideration; SLIC can also help with performance in
ways that the other primitives cannot. With SLIC, one can optimize away hot spots by
downloading code into the kernel to check commonly used system calls. Remember that
the principle cost of Janus lies in the extra context switch incurred on each potentially-unsafe
system call. If one finds a bottleneck in execution performance—suppose one application
uses the sendto system call very frequently, say—then one can eliminate the extra context
switch for sendto, and thus the performance bottleneck, by moving the sendto security
checks into the kernel. This ability to tune performance to eliminate hot spots is a valuable
advantage.

In summary, the power of SLIC provides very strong support for Janus, significantly
enhancing performance and assurance levels. The only drawback is that SLIC does add
considerable complexity to the OS.

12.3 Ewvaluating /proc

The Solaris /proc filesystem is nearly as powerful as SLIC. It supports all the
capabilities Janus needs; it also supports all the convenient features listed earlier. The first
implementation of Janus was built using the /proc tracing mechanism, and the combination
has performed beautifully. (We will see later some areas where ptrace fails due to subtle
pitfalls while /proc excels.) In short, the /proc tracing primitive is powerful, elegant, and
well-engineered—it is an excellent choice for use with Janus, where available.

12.4 Evaluating ptrace

In contrast, the ptrace primitive has a number of serious failings that make it
simply unsuitable for our purposes. First of all, fine-grained control over which system
calls get traced is not available—with ptrace, it’s all or nothing. This is very bad for
performance. Secondly, it is impossible to follow forks with ptrace securely, so Janus
would not be able to confine applications that legitimately need to spawn children.

Far worse, ptrace doesn’t offer the ability to abort system-call requests that fail
Janus’s security checks. Without OS help, the only alternative is to kill the traced process
brutally before a dangerous system call is executed. This response is far too precipitous.
In practice, most large applications will occasionally issue system-call requests that Janus
denies; but those requests are typically not critical, and if they are denied the application
usually recovers gracefully. In contrast, if we were to kill the application in response to such
syscalls, graceful recovery would be impossible, and Janus would render most non-trivial
applications unusable. To drive the nail in the coffin, it is possible that there might be a
race condition: the system call might be executed before the traced process is killed.

Therefore, we find that ptrace is totally inadequate: it is too slow and far too
limited to support Janus’s needs.

12.5 ptrace++

The inadequacy of ptrace is very unfortunate, for ptrace is a sort of “least-
common-denominator” standard for process tracing. Most operating systems implement

38

the ptrace primitive. In particular, it is the only tracing primitive supported on Linux,
our preferred platform. However, Linux has a powerful advantage: it comes with source.
This makes Linux especially well-suited to experimentation with potential OS extensions.
Therefore, we decided to test our analysis of what OS support Janus needs by extending
ptrace. We set out to support Janus more effectively by implementing a more sophisticated
tracing primitive, which we call ptrace++.

The new ptrace++ interface implements a few simple new features over and above
the standard ptrace feature-set. First, ptrace++ allows system-call requests to be aborted
before they are executed. The error code is EPERM by default, though any other code
can be easily specified. Also, there are two new features that may be enabled on a per-
process basis: tracing features are inherited across forks when follow-fork is enabled, and
fine-grained control over which system calls are traced is available. Thus, ptrace++ is
backwards-compatible with ptrace, but the new extended functionality may be invoked by
any process (such as Janus) that understands the new extensions to the interface.

Implementing ptrace++ on Linux was not very difficult. The primary challenge
lay in handling the new requirement for per-process state. The vanilla ptrace interface
was stateless, but ptrace++ needs to keep state for which features are enabled and which
system calls to trace. One natural approach for managing state would be to add a new entry
to the Linux process structure; however, the organization of the Linux source makes this
change very unwieldy*. Instead, we followed a more modular and somewhat less preferable
approach: a separate data structure containing per-process tracing state. Qur implemen-
tation uses a linked list in static kernel memory, indexed by process id, with an entry for
each traced process with extended ptrace++ functionality enabled. With this strategy, one
has to do some extra work to avoid memory leaks. In particular, one must ensure that a
process’s tracing state is freed after the process exits.

In the end, our implementation of ptrace++ added about 185 lines of C to a 415-
line file containing the core of the ptrace kernel code. Most of the new code was dedicated to
managing the per-process state. The attempt to confine the kernel modifications was largely
successful: apart from the changes to the core ptrace code, only two minor additions—one
affecting fork and one to exit—were required elsewhere in the Linux kernel.

We then extended Janus to use the ptrace++ interface. The development process
was lengthy and painful. Most of the effort was dedicated to identifying, isolating, and
working around obscure idiosyncrasies in the ptrace++ primitive. Most of these speed-
bumps can be attributed to ptrace’s design: it overloads the Unix signals mechanism to
provide upcalls on each system-call event, and the tracer receives the “upcall” by waiting for
a SIGTRAP signal from the tracee. In general, it is well-known in object-oriented circles that
operator overloading tends to be rife with subtle pitfalls. In ptrace’s case, the overloading
of the signals mechanism creates a number of thorny problems for users of ptrace.

We list a few of the less-obvious implementation pitfalls here:

e ptrace breaks wait: One serious problem with overloading the signals mechanism

4The size of the process structure is hard-coded in a number of places—for example, in some assembly
files—and adding a new entry would require changes in a number of other places. It wasn’t clear just how
large an avalanche this would create, and we weren’t anxious to find out, so we avoided changing the process
structure and instead built a system of shadow structures.

39

is that some signals-related functionality breaks in certain circumstances, ruining the
transparency of tracing. In particular, if both child and parent are traced, and the
parent waits for a signal from the child, things will break. Due to interference from the
tracing, the parent’s wait may return early, perhaps with notice of a tracing event from
the child (which is only supposed to be received by the tracing application, not the
traced parent). In practice, this interference usually confuses the parent enough that
it fails to recover and dies. Because of fundamental flaws in the ptrace architecture,
it is not possible to fix this in the kernel without drastic measures.

We attempt to work around this failure mode in the user-level Janus code; unfortu-
nately, heroic efforts are required. Janus traps wait calls by all traced parent processes
that have traced children. When such a trap occurs, Janus manually suspends the
parent (i.e., refrains from resuming the process and leaves the process in a stopped
state). Janus doesn’t allow the parent to continue execution until one of its children
enters a state that might (legitimately) cause the parent’s wait to return; then Janus
manually restarts the parent and allows its wait request to execute and return. This
hack has worked well enough, so far. However, we are not happy with it. It adds
complexity—about 40 (highly subtle) lines of C code of a 380 line adaption layer. It
also leaves us with some nagging doubts about whether the extra code opens up new
security holes.

e Can’t transfer control securely: One obscure limitation of ptrace is that a traced
process may have at most one tracer at any time. This makes it impossible to transfer
control of an untrusted application from one Janus process to another atomically®.
This, in turn, requires that when a Janus instantiation controls an untrusted applica-
tion, it must also control all its children® (since it originally has control of each child
created by a fork and cannot give away this control securely).

In fact, the one-tracer-per-tracee limitation of ptrace can ultimately be blamed on
ptrace’s signals-based upcall mechanism. Because the tracer waits for a SIGTRAP
signal from the tracee, and because the semantics of wait are that a process can only
wait on its children, the tracer must be the “parent” of the tracee; but a process
can only have one “parent”, giving rise to the one-tracer limitation. Thus we see
that ptrace’s architecture fundamentally prevents secure transfer of control, and no
extension to ptrace can remedy this shortcoming.

5The obvious approach would have the prior owner detach the untrusted application—causing it to resume
execution without any tracing in effect—and then signal the new owner to attach immediately. However,
this has a race condition: it leaves open a short window during which the untrusted application may issue
an unsafe system call.

5Tt is worth pointing out that, even if it were possible to transfer control of an untrusted application
securely, the wait workaround described above would still provide strong pressure for a single Janus process
to control not only the untrusted application but also all children it spawns. The reason is obscure: if a Janus
process controls a traced parent but not one of its children, the child’s controller will need to communicate
frequently with the parent’s controller so that the parent’s controller knows when to let wait system calls
complete. It is better to avoid the need for inter-process communication and synchronization between
Janus processes (which is tricky to get right) by maintaining a one-tracer-many-tracee relationship. The
fork complication mentioned below would also provide some pressure to maintain a one-tracer-many-tracee
relationship, because (again) IPC would otherwise be needed to handle a relatively rare race condition.

40

In contrast, our original Janus implementation—which never had any difficulty trans-
ferring control of an untrusted application securely, because it used /proc—maintained
a one-to-one relationship between tracing and traced processes by forking a new Janus
process and transferring control of the traced child to the new Janus process each time
the untrusted application forked a new child. This invariant simplified the implemen-
tation of Janus somewhat.

e Kill on tracer-death not supported: It would be desirable for the tracee to be
automatically killed by the kernel if the tracer dies unexpectedly. However, we have
not implemented this wish list item; it would require adding too much new complexity
to the kernel, and we are concerned that a coding error in our kernel code might open
a security hole that allows an attacker to assassinate innocent applications.

e Race condition in fork: Due to a design oversight on our part, ptrace++ does not
handle fork system calls very effectively. The issue is that the tracer does not receive
a tracing event when the fork returns in the newly created child process; instead,
the tracer receives tracing events only on the child’s subsequent system calls. This
leaves open a race condition: after observing a fork syscall entry, the tracer knows
to expect a new child process, but will not learn the process id of the child until the
fork syscall exits in the parent; yet the child may issue system calls before the fork
returns in the parent. When relying on ptrace++, Janus needs to learn the child’s
process id and connect it to the parent, because Janus keeps track of the full process
tree structure’. This opens up a race condition: if two different traced processes fork,
and in both cases the fork system call returns in the child before returning in the
parent, and a child issues another system call before the fork returns in the parent,
Janus will not be able to establish the process tree structure. We note that Solaris’s
/proc tracing primitive does not have these problems.

We work around the race condition with some heuristic approaches that work most
of the time. When they don’t work, the application may fail to work properly, but
security won’t be breached.

This is the only ptrace++ flaw that can be attributed to our extensions, rather than
being a fundamental consequence of the ptrace architecture. We know how to fix
this flaw, but the fix appears to require some changes to the Linux system-call en-
try /exit sequence, which is coded in assembly because it is such a commonly used and
performance-critical execution path. We are loath to tamper with code this critical,
especially to fix such a minor flaw. Still, integrity requires that we describe the unfixed
weakness in our implementation.

As much as we hated to do it, we were forced to add substantial complexity to the user-level
Janus code to work around these pitfalls in ptrace++. We will detail below how much this
affects the assurance level of our implementation.

Our implementation of Janus relies on a thin adaptation layer (which provides
a simple interface to the tracing functionality Janus needs) to allow Janus to work with

"Janus needs to maintain the full process tree structure to apply the wait workaround, for instance. This
is an example where two annoying shortcomings of ptrace interact to create even more annoyance.

41

Janus portable code

User-mode adaption layer

OS kernel code

Figure 4.1: The high-level organization of Janus.

whatever tracing primitive may be available. This simplifies the task of porting Janus to
a new operating system, as well as simplifying subsequent configuration control issues. We
summarize the organization of Janus in Figure 4.1.

By comparing the adaption code for /proc and for ptrace++, we can meaningfully
and fairly compare the suitability of the /proc and ptrace++ mechanisms. Figure 4.2
gives a detailed look at the structure of the Janus implementation, listing the code size
for each key component. We can see that the adaption layer for /proc is significantly
smaller—and, incidentally, simpler as well—than the corresponding code needed to support
ptrace++. Most of the /proc code is legitimately dedicated to adaption (e.g. translation
of interface formats), while the ptrace++ bloat is explained by the need to work around
ptrace++’s many idiosyncrasies and oddities with extra user-level adaption code. Indeed,
our /proc adaption layer just worked the first time without any debugging needed (apart
from correcting a few typos that the compiler detected immediately), while our ptrace++
adaption code took a significant amount of effort to debug and fix.

In short, while ptrace++ is minimally adequate, it has a number of severe draw-
backs. We found that the /proc mechanism provides a cleaner, simpler, and more powerful
interface to the tracing functionality Janus demands from the operating system, and we
would encourage folks to avoid the ptrace++ approach when possible.

Our implementation experience with ptrace++ taught us that it is trickier to
design and implement a well-engineered tracing primitive than we had originally thought.
Previous paragraphs enumerated a number of pitfalls in using ptrace++ that unexpectedly®
reared their head during the development of Janus’s ptrace++ adaption layer.

Most of the pitfalls in ptrace++ were fundamental in ptrace’s original design—
the primary culprit was the overloading of the Unix signals mechanisms—and could not
have been avoided by any mechanism that attempted to extend ptrace. Still, we were sur-
prised by the idiosyncrasies and pitfalls associated with ptrace-based tracing mechanisms.
According to the “principle of least surprise”, this is a strong indication of a ill-chosen

81f we had studied the strace source code, perhaps we would have been less sanguine about our chances.

42

Janus portable core Modules portable code
Portable code 600 lines 800 lines total

Adaption layers

150 lines| | 525 lines 420 lines 320 lines

|
l
|
/proc net ! ptrace++ net
|
|
|
|

/proc core| | STREAMS
?lines

ptrace core || ptrace++ extensions TCP stack
415 lines 185 lines

Figure 4.2: The code size of key Janus components. The figure is divided vertically into
portable code, adaption code, and kernel code; the latter two categories are divided hori-
zontally according to whether they are built for Solaris or Linux.

primitive.

There were two core failures in the ptrace++ architecture. First, ptrace and
ptrace++ violate the transparency of tracing: when tracing is initiated on a child process,
the shape of the process tree is modified slightly, and the semantics of the Unix signals
interface are overloaded to communicate tracing events. Much user-level adaption code in
Janus is dedicated to restoring the lost transparency. Better event notification primitives
could have helped prevent these failures. Second, ptrace and ptrace++ violate extensibility
in a subtle way: although it is possible for a single Janus process to extend the system
reference monitor by tracing the targeted application, once the reference monitor has been
extended in this way it cannot be extended any further, because of the one-tracer-per-tracee
limitation. As a result, it is impossible to transfer control securely from one Janus process
to another.

Most of ptrace++’s problems could have been avoided had it fully obeyed both the
transparency and extensibility principles. Full extensibility would have allowed for secure
control transfers. Full transparency would have prevented ptrace++ from breaking wait,
thereby obviating the need for the workaround to keep track of the process tree structure
and thus rendering the fork race condition irrelevant. The few remaining implementa-
tion challenges could have been eliminated with some additional support from the OS for
extending kernel state such as the process data structures.

We hope that future implementors will be able to benefit from our experience
and avoid the worst of the subtle traps we encountered. As a result of our experiences
with ptrace++, we have identified two additional principles for the design of system-call
interposition: provide transparency, and plan for multiple extensions. Also, we suggest that
operating systems should provide better event notification primitives and better ways to
extend internal kernel state.

43

13 Principles for designing interposition facilities

We hope that the account of our struggles and the analysis of which features Janus
needs, as presented above, will help the OS designer steer away from the thorniest pitfalls.
We also offer a few principles to help OS designers select an architecture for a system-call
interposition primitive:

1. Be general: OS designers should commit to a certain level of generality of mechanism.
This means building a facility for system-call interposition, not a facility for debugging.
In particular, the OS designer should target security and extensible reference monitors
as one important application.

Other benefits of generalized interposition mechanisms are documented in papers
describing new filesystems [5, 39, 43, 42], transparent result caching [67], emulation
of other operating systems [43, 42], transactional software environments [43, 42], and
so on. Because these applications can be handled with very similar mechanisms, we
argue that one generalized mechanism could handle them all with little additional
cost.

On the other hand, security considerations weigh against including unnecessary fea-
tures, as suggested in the next principle.

2. Respect economy of mechanism: Implement the least powerful interposition
mechanism that will suffice; simpler mechanisms are more likely to be correct (and
thus secure). The least powerful tracing mechanism will usually also be the one that is
the least costly, in terms of design effort, implementation complexity, code bloat, and
kernel modularity. Our analysis of which features Janus absolutely needs should help
the OS designer maintain economy of mechanism. Also, our analysis of the value of
additional features (in terms of added security robustness, savings in user-level com-
plexity, and performance benefits) should help decide when to add extra functionality.

3. Transparency is critical: It is vital that the interposition mechanism be transpar-
ent to the application. In particular, the mechanism should not interfere with the
traced application’s execution environment or overload the meaning of existing inter-
faces in a way that is visible to the traced application. ptrace and ptrace++ do affect
the execution environment slightly by modifying the form of the process tree when
tracing is initiated on a child process. Also, to communicate tracing events, ptrace
and ptrace++ overload the semantics of the Unix signals interface. Both of these
abstraction violations ruined the illusion of transparency in certain cases, and sub-
stantial extra code was required in Janus to work around these failures. OS developers
should learn from our mistakes; this painful experience is well worth avoiding.

4. Provide better event notification primitives: Event notification and upcalls
into user-level applications are not trivial to implement. Had the OS provided better
event notification primitives, there would have been no temptation to overload the
Unix signals interface to notify tracers of tracing events. This overloading of the
semantics of existing interfaces is exactly what led to the violation of transparency

44

in ptrace and ptrace++. Event notification is one area where OS implementors can
help enable security mechanisms based on system-call interposition.

5. Plan for multiple extensions: Where two or three objects of some type can exist,
make it easy for outsiders to add a fourth or fifth®. Applied narrowly, this just suggests
that users ought to be able to extend the system reference monitor by making it more
restrictive. However, this also applies more generally. It is not enough to allow a
single process to contribute extra access control checks to the extensible reference
monitor; the system should allow multiple processes to extend the reference monitor
simultaneously. ptrace and ptrace++ do not allow multiple processes to trace a
target application, and this has the subtle side effect that transferring control of a
traced application atomically is impossible in ptrace and ptrace++. Once again, OS
designers are advised to take note of our mistakes.

6. Allow interposing on internal state: Kernels should make it easy (or at least
possible) to extend some internal data structures. Since we were not able to add to
the Linux process structure, in ptrace++ we were forced to construct shadow copies of
the process structures; and since we were not able to interpose on process death events
or learn when internal data structures were deallocated, to prevent memory leaks from
shadow data structures that are never freed we were forced to poll the official kernel
data structures regularly. Perhaps if the Linux kernel had been implemented in an
object-oriented language such as Java it might have been easier to extend the kernel
process structure by, for example, subclassing the Process class.

Also, on a related note, if the kernel could somehow export more of its internal data
structures to user-level reference monitors, this would be useful. For instance, direct
access to inode structures, the process tree structure, and pathname lookup functions
would greatly decrease the amount of duplication of state and code in Janus, and thus
increase Janus’s assurance level significantly.

7. Simplify the system-call interface: The principles above have all concentrated
on the tracing facility’s feature set. However, OS developers should be aware that
other factors also affect the effectiveness of Janus. In particular, the structure of the
system-call interface can significantly impact Janus.

One of the central insights that we derive from this work is the importance of simplicity
in OS interfaces. We took advantage of a powerful methodology for implementing
confinement mechanisms:

(a) Pick a simple, narrow, clean interface. Ensure that all interactions between the
untrusted system element and its environment must pass through this interface.

(b) Enforce the security policy by interposing extra permission checks on this inter-
face.

9This excellent piece of advice is due to Steve Bellovin [69], and we are grateful to be able to repeat his
design principle here.

45

On most modern operating systems, the system-call interface is very convenient for
our purposes: it is already relatively simple, narrow, and clean; and all privileged
system interactions pass through it.

However, the suitability of the system-call interface does vary from system to sys-
tem. Here are a number of lessons we learned from experience with several operating
systems’ system-call interfaces:

e We learned that it should be simple and clean, to avoid cluttering the Janus
implementation with all sorts of code for parsing system calls.

e Also, the interface should be narrow and minimal, rather than rich and complex,
to avoid complicated unforeseen interactions between different features of the
interface.

e Special cases should be avoided (because they are easy to overlook when imple-
menting Janus).

e Message-passing interfaces should be avoided, because interposing on them typi-
cally requires interception and scanning of all data flow, including non-dangerous
communication (which is the majority of all data flow); it is much better to ex-
plicitly distinguish cross-domain function invocation (e.g. system calls) from
communication.

e It is helpful to separate potentially unsafe operations (which must be subjected to
permission checks) from frequently used safe operations. For instance, the open
and read system calls are very well chosen in this regard: all permission checks
are done at open time, and then reads on a valid file descriptor may always
proceed unchecked. This allows Janus to trap only open system calls (which are
relatively rare) and not trap reads, so reads can proceed at full speed.

The basic paradigm here is the use of early binding: all access checks are done
when the resource is bound, and then the application is allowed fast direct access.
This paradigm is very well suited to Janus, since it allows permission checks to
be separated from operations that must be fast.

e Requests should be contezt-free—checking them (and thus executing them) should
not require much implicit state—because the more security-critical state Janus
relies on, the greater the chance for mistakes and security holes. For example,
the Berkeley sockets network interface suffers in this regard: to filter network
connections, one must match up socket calls to connect calls (since the socket
call specifies whether to use TCP or UDP, and the connect call specifies the
rest of the destination address). The end result is that Janus ends up saving
security-critical state associated with each socket file descriptor. Furthermore,
this state is a duplication of information that is already managed by the OS ker-
nel, so any error in handling the state, or any mismatch between Janus’s state
and the kernel’s internal state, could lead to a security compromise.

ATl of the above criteria are geared towards making Janus as effective and secure as
possible; other considerations may be more important in some cases, of course.

46

Our experience with Solaris and Linux showed us the strengths and weaknesses of their
respective OS interfaces. We found that ioctls were a serious nuisance on both OS’s,
because they implement a great variety of functionality that is often simultaneously
poorly documented and security-critical. Fortunately, ioctls are a Unix idiosyncrasy.

However, the majority of our problems with the two system-call interfaces were found
in the interface for accessing network functionality. The Solaris STREAMS-based
network interface was very poorly suited to monitoring by Janus. The Solaris kernel
implements network protocols as a STREAMS module; user-level code interacts with
the STREAMS modules by a protocol-independent message-passing interface. A user-
level shared library emulates the Berkeley sockets interface by sending messages to
the STREAMS modules. Any one socket call may translate into multiple system calls:
usually a putmsg or two, and occasionally an open or several ioctls. This required a
lot of security-critical state in Janus to track the progress of the STREAMS module,
and match up multiple system calls that were associated with one socket call; also,
it was quite a pain to implement, as we had to monitor and parse all messages sent
by putmsg. (Fortunately for us, the message-passing interface was implemented with
putmsg: if it had been implemented with write, we would have had to monitor all
write calls, with disastrous results for performance.) Linux’s networking interface is
much better, as it simply offers the Berkeley sockets calls directly as syscalls. There
was still the issue of matching socket calls to connects, but this was relatively minor.

In any case, during our studies it became clear to us that Janus is dependent upon
the OS designer to pick a simple, clean interface for system calls; any failure on this
point forces Janus to implement complex and potentially untrustworthy workarounds.

8. Other security-related events: OS designers might want to consider support for
interposition on other security-related events. Currently Janus interposes only on
the system-call interface, on the assumption that system calls are the only security-
critical ways for untrusted applications to interact with the OS. However, other OS
interfaces—such as floating point exceptions, virtual memory events, hardware inter-
rupts, or other traps—might conceivably be relevant to some future application.

14 Summary

The core contribution of this work towards operating systems research is the re-
alization that OS designers can enable powerful new security tools with just a little extra
effort. Supporting Janus is cheap: implementing process tracing takes you most of the
way towards Janus’s requirements, and most systems already support some form of process
tracing; furthermore, we gave above some experience and guidelines to help reduce the cost
of supporting Janus even further. At the same time, this support provides great security
benefits: as we showed in other sections, Janus can be used to secure sendmail, Java,
Netscape and its helper applications, as well as other vital-yet-dangerous elements of the
system. In short, OS designers should strongly consider providing support for Janus, as
this provides great leverage from simple mechanisms.

47

Currently, many in the security community feel that the operating system is be-
coming increasing irrelevant to computer security, especially with the advent of firewalls, the
shift in emphasis to the security of large network applications (such as sendmail, Netscape,
web servers, etc.) instead of the security of the OS kernel, and the growing importance of
language-based techniques for securing mobile code. However, our work shows that simple
new OS primitives for system-call interposition can provide powerful solutions for securing
large network applications and for confining mobile code. By suggesting that OS research
still has a lot to offer, we suggest this work ought to form a wake-up call to the security
community.

48

Chapter 5

Other work

This chapter describes some other work relevant to Janus. First we survey some
related work and how it influenced our design; next we discuss some limitations of our tool,
and how they might be fixed; and then we list some possible areas for future work.

15 Related work

There is a significant body of work in the OS community on interposition. SLIC
[39] considers interposition as a technique for low-cost extensibility for commodity operating
systems; it allows users to interpose on selected OS interfaces by downloading code into the
kernel. The SLIC work studies a number of sample applications, with our work on restricted
environments for helper applications [40] motivating one of them.

Also, Jones studied interposition in the Mach kernel as a tool for implementing
user-level extensions [43, 42]. His work demonstrated that OS support for interposition on
the system-call interface can enable significant new functionality. However, his toolkit as
presented is not particularly useful for confinement, as Mach’s support for interposition does
not allow one to protect the enforcer (the interposed code) from the enforcee (the untrusted
application).

After our initial work on secure environments for helper applications [40] was pub-
lished, Alexandrov et al. [5] showed how to implement a user-level filesystem extension
with system-call interposition. Like Janus, their implementation used the Solaris /proc
system-call tracing facility to intercept system calls and simulate the semantics of the ex-
tended interface. Their work provides further evidence for our assertion that OS support
for user-level system-call interposition would enable many other potential applications as
well as help improve site security.

Other recent work on using system call interposition for security wrappers has
built on the approach we described in [40]. One paper [53] provides an implementation
of system call interposition using Linux kernel modules. They build a tool to limit the
file accesses an untrusted process may make and demonstrate their approach by using it to
protect the Netscape web browser. (They do not consider access control for other resources,
such as the network.) A more recent paper [37] proposes a wrapper definition language to
reduce the development cost of building wrappers that use system call interposition. One

49

key contribution of their work is the notion of tagging related system calls, so that the
wrapper developer can specify policy at a high level; the wrapper compiler translates this
into a platform-dependent form. They validate their approach with implementations for
FreeBSD and Solaris using loadable kernel modules, and they build several applications,
including confinement of untrusted applications and intrusion detection based on recognizing
sequences of system calls.

Other researchers have previously advocated the use of interposition to improve
system security. Bump-in-the-stack implementations of IPSEC interpose on the interface
between the TCP/IP stack and the network driver to add encryption and authentication to
the IP protocol [69]. securelib is a shared library that replaces the C accept, recvfrom,
and recvmsg library calls by a version that performs address-based authentication; it is
intended to protect security-critical Unix system daemons [50]. Also, [11] briefly describes
an implementation of dynamic detection and prevention of security-relevant race conditions
that works by interposing on dynamically-linked libraries. Other research that also takes
advantage of custom shared libraries for non-security purposes can be found in [45, 34].
However, interposition on the library interface is not usable for confinement, since a hostile
application could bypass this access control by simply issuing the dangerous system call
directly without invoking any library calls. Therefore, we consider simple replacement
of dangerous C library calls with a safe wrapper insufficient in our extended context of
untrusted and possibly hostile applications.

Fernandez and Allen [33] extend the filesystem protection mechanism with per-user
access control lists. Lai and Gray [46] describe an approach that protects against Trojan
horses and viruses by limiting filesystem access: their OS extension confines user processes
to the minimal filesystem privileges needed, relying on hints from the command line and
(when necessary) run-time user input. TRON [10] discourages Trojan horses by adding per-
process capabilities support to the filesystem discretionary access controls. These works all
suffer from two major limitations: they require kernel modifications, and they do not address
issues such as control over process and network resources.

Domain and Type Enforcement (DTE) is a way to extend the OS protection
mechanisms to let system administrators specify fine-grained mandatory access controls
over the interaction between security-relevant subjects and objects. A research group at
TIS has amassed considerable experience with DTE and its practical application to Unix
systems [7, 8, 63, 65]. DTE is an attractive and broadly applicable approach to mandatory
access control, but its main disadvantage is that it requires kernel modifications; we aimed
instead for user-level protection.

More recently, Schneieder has given an automata-theoretic treatment of inter-
position as a implementation technique for security, yielding a theory of implementable
enforcement mechanisms [62, 61]. His work suggests that interposition is a very powerful
technique for implementing a large class of security policies.

The confinement problem was first identified by Lampson in [48]. His formula-
tion dealt primarily with confidentiality protection, but modern versions of the confinement
problem are typically concerned with system integrity and availability as well as the con-
fidentiality of secret information. His work spawned a small subfield of research on covert
channels and information leakage; in this thesis, we have sidestepped the theoretical dif-

50

ficulties posed by covert channels by ensuring that confined programs never get access to
confidential information in the first place. The Orange Book [32] tried to address a number
of the problems with discretionary access control schemes as solutions to the confinement
problem by introducing mandatory access control, but this effort failed in commercial sys-
tems because its confidentiality protections were too strong and its integrity protections
too weak. For an example of a more modern treatment of the confinement problem and its
theory, see [12].

Also, [24, 25] gives practical experience on the benefits of confining untrusted pro-
cesses to a sandboxed “jail”. The authors used chroot () for confinement, which worked well
for their purposes. Today, the rising importance of network security means that chroot ()’s
inability to handle resources other than the filesystem is a serious limitation; this motivates
our work on more general mechanisms for confining untrusted applications.

To achieve security, we relied heavily on the concept of sandboxing, first introduced
by Wahbe et al. in the context of software fault isolation [71]. However, those authors were
actually solving a somewhat different problem. What they achieved was memory safety for
untrusted modules running in the same address space as trusted modules. They ignored the
problem of system-level security; conversely, we do not attempt to provide safety. They also
use binary-rewriting technology to accomplish their goals, which makes it very challenging
to run arbitrarily general pre-existing applications robustly and efficiently!.

The same basic idea—isolating certain operations for extra scrutiny—may be found
in both software fault isolation and Janus. Thus, we could probably have used software
fault isolation instead of process tracing to isolate system calls and interpose on them, at
least for those binaries which software fault isolation can be applied to. However, such an
approach has a serious disadvantage: memory safety must also be guaranteed to protect the
enforcement mechanism from the untrusted application, whereas in our implementation the
enforcement mechanism uses a separate address space and thus gains dependable protection
for free. In any case, no matter which mechanism is used for system call interposition
(process tracing, software fault isolation, SLIC [39], or something else entirely), our work on
Janus will still be relevant for what it says about how to check the system calls issued by
untrusted code.

In a more recent approach, proof-carrying code [54, 56, 59, 55, 57, 58], the compiler
embeds security checks at each unsafe operation and emits a proof that the resulting code
satisfies the security policy; at runtime, a verifier can quickly check the safety proof. Proof-
carrying code allows one to check very sophisticated and fine-grained security policies, and
thus can be much more flexible than Janus. (The only challenge is to formalize the security
policy in the logical framework used by the prover and verifier.) In particular, it would
presumably be possible to build a compiler that embeds Janus security-checking code in
the application and can prove to a verifier that the application would pass all checks Janus
would make, thereby avoiding the need for a separate Janus process. However, Janus does
provide some extra benefits because it is orthogonal to the protected application: we can
specify the security policy at runtime rather than at compile time, and we can protect

! Consider, e.g., self-modifying code, indirect jumps, variable-length instructions, dynamic linking, tram-
polines, instruction atomicity, exception handlers, and the complex addressing modes found in today’s CISC
architectures to get some idea of the implementation challenges [49, 64].

51

pre-existing, pre-compiled legacy code.

Java [41] is a comprehensive system that addresses, among other things, both safety
and security, although it achieves security by a different approach from ours. Java cannot
secure pre-existing programs, because it requires use of a new language. We do not have
this problem; our design will run any application, and so is more versatile in this respect.
However, Java offers many other advantages that we do not address; for instance, Java
provides architecture independence, while Janus only applies to native code and provides
no help with portability. Another important difference is that Java provides support for
high-level and fine-grained security policies, while we focus on low-level, coarse-grained
(system call based) policies that are less expressive but simpler to get right.

OmniWare [28] takes advantage of software fault isolation techniques and compiler
support to guarantee memory safety for untrusted code. However, as we show in this work,
security for untrusted code requires much more than just memory safety: access to all
resources must be mediated, and [28] says nothing about mediation for other resources. Like
Java, OmniWare offers architecture-independence, extensibility, and efficiency as important
goals; Janus ignores these issues. Another major difference between Janus and OmniWare
is that OmniWare cannot provide security for legacy code, while Janus takes this on as a
primary goal.

We note two important differences between the Java approach and the Janus phi-
losophy. The Java protection mechanism is much more complex, and is closely intertwined
with the rest of Java’s other functionality. In contrast, we have more limited goals, we
explicitly aim for extreme simplicity, and we keep the security mechanism orthogonal from
the primary functionality.

16 Limitations

One inherent limitation of the Janus implementation is that we can only success-
fully run applications that do not legitimately need many privileges. Our approach will
easily accommodate any program that only requires simple privileges, such as access to a
preferences file. Application developers may want to keep this in mind and not assume, for
example, that their applications will be able to access the whole filesystem?.

We have followed one simple direction in our prototype implementation, but others
are possible as well. One could consider using specialized Unix system calls to revoke certain
privileges. The two major contenders are chroot (), to confine the application within a safe
directory structure, and setuid (), to change to a limited-privilege account such as nobody.
Unfortunately, programs need superuser privileges to use these features; since we were
committed to a user-level implementation, we decided to ignore them. In retrospect it may
be prudent to reconsider this design choice, especially when using Janus to confine system
daemons (e.g. sendmail) that already require superuser privilege to execute. (But note
that this shortcoming is easy to remedy, thanks to the Unix tool philosophy, by execing
Janus from a tiny setuid program that simply performs a chroot () and setuid().) Other

*The Athena X file open widget is a good example of what not to do: it assumes that it has access to
the whole filesystem so that it can identify the absolute pathname of all files, and it doesn’t handle failure
well at all.

52

security policies (such as mandatory audit logs) may also be more appropriate in some
environments.

The most fundamental limitation of our implementation, however, stems from its
specialization for a single operating system. Each OS to which Janus might be ported
requires a separate security analysis of its system-call interface. Also, a basic assumption
of Janus is that the operating system provides multiple address spaces, allows trapping of
system calls, and makes it feasible to interpose proxies where necessary. Solaris 2.4 has the
most convenient support for these mechanisms; we believe our approach may also apply to
some other Unix systems. On the other hand, platforms without support for these services
cannot directly benefit from our techniques. In particular, our approach cannot be applied to
PCs running MS-DOS or Microsoft Windows. The utility of these confinement techniques,
then, will be determined by the underlying operating system’s support for user-level security
primitives.

17 Future work

A possibility for future enhancement of our implementation is to offer extensive
auditing. It would be conceptually simple to add logging and accounting capabilities to
our prototype. The difficult task is figuring out what to do with the audit logs after you
have them; this seems to require some significant work on developing an intrusion detection
back-end, and so we do not currently have any plans to implement auditing extensions.

We believe that interposition of filtering proxies is a promising approach for im-
proving control over network accesses. By taking advantage of earlier work in application
proxying firewalls, we were able to integrate a safe X proxy into our prototype easily. We
suspect that one can achieve enhanced control over many other network communications of
interest by leveraging existing application-level proxies developed by the firewall commu-
nity. This would enable our techniques to be used in broader contexts. The overlap with
research into firewalls lends hope that these problems can be solved satisfactorily.

One issue is how to interpose proxies forcibly upon untrusted and uncooperative
applications. We currently use environment variables as hints—for instance, we change
the DISPLAY variable to point to a proxy X server, and disallow access to any other X
display—but this only works for well-behaved applications that consult environment vari-
ables consistently. One might consider implementing the hints also with a shared library
that replaces network library calls with a safe call to a secure proxy. Other tricks are also
possible.

A more aggressive area for future work lies in shedding code from the Janus im-
plementation to increase its assurance level. One particularly troubling aspect of Janus is
that, though we have tried to keep duplication to a minimum, Janus ends up duplicating a
number of privilege checks already found in the kernel, which leaves room for inconsistencies
and potential bugs. We suspect that this would probably require increased support from
the operating system to access internal data structures; a mechanism like SLIC might help
substantially in this regard.

Finally, more experience with some of the applications suggested in Chapter 3
(or other applications as appropriate) would help to better understand the advantages and

limitations of the Janus approach.

53

54

Chapter 6

Conclusions

We have showed how confinement can be used to secure systems that include
untrusted and untrustworthy code. We have demonstrated that interposition on the OS
interface is a powerful technique to achieve this goal, and furthermore we have shown that
existing process tracing primitives can enable the construction of high-performance, user-
level, general-purpose confinement tools. Our prototype, Janus, proved to be well-suited to
a number of compelling applications, including security for mobile code and mobile agents
as well as security for potentially vulnerable daemons like sendmail. This shows that Janus
is a powerful tool with broad applicability. Finally, we analyzed the implications for OS
designers, noting that Janus requires only minimal support from the operating system and
arguing that OS designers ought to include this support.

55

Bibliography

[1]
2]
3]
[4]
[5]

[10]

[11]

[12]

[13]

[8lgm]-Advisory-16.UNIX.sendmail-6-Dec-1994, December 1994.
[8lgm]-Advisory-17.UNIX.sendmailV5-2-May-1995, May 1995.
[8lgm]-Advisory-17.UNIX.sendmailV5.22-Aug-1995, August 1995.
[8lgm]-Advisory-20.UNIX.sendmailV5.1-Aug-1995, August 1995.

Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J. Scheiman.
Extending the operating system at the user-level: the UFO global file system. In Proc.
1997 Annual USENIX Technical Conference, January 1997.

J. P. Anderson. Computer security technology planning study. Technical Report ESD-
TR-73-51, ESD/AFSC, Hanscom AFB, Bedford, Mass., October 1972. (NTIS AD-758
206).

Lee Badger, Daniel F. Sterne, David L. Sherman, and Kenneth M. Walker. A domain
and type enforcement UNIX prototype. USENIX Computing Systems, 9(1):47-83,
Winter 1996.

Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and Sheila A.
Haghighat. Practical domain and type enforcement for UNIX. In Proc. 1995 IEEE
Symposium on Security and Privacy, 1995.

Steven M. Bellovin. Re: sendmail wizard thing..., February 1995. Post to bugtraq
mailing list. http://geek-girl.com/bugtraq/1995.1/0350.html.

Andrew Berman, Virgil Bourassa, and Erik Selberg. TRON: Process-specific file pro-
tection for the UNIX operating system. In Proc. 1995 USENIX Winter Technical
Conference, pages 165—-175. USENIX Assoc., 1995.

Matt Bishop and Michael Dilger. Checking for race conditions in file accesses. USENIX
Computing Systems, 9(2):131-152, Spring 1996.

W.E. Boebert and R.Y. Kain. A further note on the confinement problem. In Proc.
IEEE 30th Annual 1996 International Carnahan Conference on Security Technology,
pages 198-202, 1995.

CERT advisory CA-88:01, 1988.

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]

56

CERT advisory CA-90:01, January 1990.
CERT advisory CA-93:15, October 1993.
CERT advisory CA-93:16, November 1993.
CERT advisory CA-94:12, July 1994.
CERT advisory CA-95:05, February 1995.
CERT advisory CA-95:08, August 1995.
CERT advisory CA-95:10, August 1995.
CERT advisory CA-95:11, September 1995.
CERT advisory CA-97.14.metamail, 1997.

Bill Cheswick and Steven M. Bellovin. A DNS filter and switch for packet-filtering
gateways. In Proc. 1996 USENIX Security Symposium. USENIX Assoc., 1996.

William R. Cheswick. An evening with Berferd, in which a cracker is lured, endured,
and studied. In Proc. of the Winter USENIX Conf., 1992.

William R. Cheswick and Steven M. Bellovin. Firewalls and Internet Security: Re-
pelling the Wily Hacker. Addison-Wesley, 1994.

Frederick Cohen. Personal communication.
Frederick Cohen. Internet holes. Network Security Magazine, January 1996.
Colusa Software. OmniWare technical overview, 1995.

Alan Cox. Vulnerability in metamail, October 1997. Post to bugtraq mailing list.
http://www.dhp.com/~fyodor/sploits/metamail .inappropriate.helpers.html.

Ray Cromwell. Buffer overflow, September 1995. Announced on the Internet.
http://www.c2.net/hacknetscape/.

Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security: From HotJava to
Netscape and beyond. In Proc. of the 1996 IEEE Symposium on Security and Privacy,
1996.

DoD trusted computer system evaluation criteria. DoD 5200.28-STD, DoD Computer
Security Center, 1985.

G. Fernandez and L. Allen. Extending the Unix protection model with access control
lists. In Proc. Summer 1988 USENIX Conference, pages 119-132. USENIX Assoc.,
1988.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

57

Glenn S. Fowler, Yennun Huang, David G. Korn, and Herman Rao. A user-level
replicated file system. In Summer 1993 USENIX Conference Proceedings, pages 279—
290. USENIX Assoc., 1993.

Armando Fox and Eric A. Brewer. Reducing WWW latency and bandwidth require-
ments via real-time distillation. In Proc. Fifth International World Wide Web Confer-
ence, May 1996.

Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric A. Brewer. Cluster-based
scalable network services. In Proc. 1997 Symp. Operating System Principles (SOSP-
16), October 1997.

Timothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS software with
generic software wrappers. In Proc. 1999 IEEE Symp. Security € Privacy, 1999.

Douglas P. Ghormley, April 1998. Personal communication.

Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and Thomas E. Ander-
son. SLIC: An extensibility system for commodity operating systems. In Proc. 1998
USENIX Technical Conference. USENIX Assoc., 1998.

Tan Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure envi-
ronment for untrusted helper applications: confining the wily hacker. In Proc. 1996
USENIX Security Symposium. USENIX Assoc., 1996.

James Gosling and Henry McGilton. The Java language environment: A white paper,
1995. http://www.javasoft.com/whitePaper/javawhitepaper_1.html.

Michael B. Jones. Transparently interposing user code at the system interface. Techni-
cal Report CMU-CS-92-170, Carnegie Mellon University, September 1992. PhD thesis.

Michael B. Jones. Interposition agents: Transparently interposing user code at the
system interface. In Proc. 14th ACM Symp. on Operating System Principles, pages
80-93, December 1993.

Brian L. Kahn. Safe use of X window system protocol across a firewall. In Proc. of the
5th USENIX UNIX Security Symposium, 1995.

David G. Korn and Eduardo Krell. The 3-D file system. In Summer 1989 USENIX
Conference Proceedings, pages 147-156. USENIX Assoc., 1989.

Nick Lai and Terence Gray. Strengthening discretionary access controls to inhibit
Trojan horses and computer viruses. In Proc. Summer 1988 USENIX Conference,
pages 275-286. USENIX Assoc., 1988.

Butler Lampson. Hints for computer system design. In Proceedings of the 9th ACM
Symposium on Operating Systems Review, volume 17:5, pages 33-48. Bretton Woods,
1983.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

58

B.W. Lampson. A note on the confinement problem. Communications of the ACM,
16(10):613-615, October 1973.

James R. Larus and Thomas Ball. Rewriting executable files to measure program
behavior. Software—Practice and Experience, 24(2):197-218, February 1994.

William LeFebvre. Restricting network access to system daemons under SunOS. In
UNIX Security Symposium III Proceedings, pages 93-103. USENIX Assoc., 1992.

Davor Matic. Xnest. Available in the X11R6 source. Also
ftp://ftp.cs.umass.edu/pub/rcf/exp/X11R6/xc/programs/Xserver/hw/xnest.

Marshall Kirck McKusick. The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley Publishing Company, 1995.

Terrence Mitchem, Raymond Lu, and Richard O’Brien. Using kernel hypervisors to se-
cure applications. In Annual Computer Security Application Conference (ACSAC’97),
1997.

George C. Necula. Proof-carrying code. In POPL’97, 1997.

George C. Necula and Peter Lee. Safe kernel extensions without run-time checking. In
0SDI’96, 1996.

George C. Necula and Peter Lee. Research on proof-carrying code for untrusted-code
security. In Proc. 1997 IEEE Symp. Security & Privacy, 1997.

George C. Necula and Peter Lee. Research on proof-carrying code on mobile-code
security. In Proc. Workshop on Foundations of Mobile Code Security, 1997.

George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code. In
Mobile Agent Security. Springer-Verlag, October 1997. LNCS 1419.

George C. Necula and Peter Lee. The design and implementation of a certifying com-
piler. In PLDI’98, 1998.

Marcus J. Ranum. Thinking about firewalls. In Proc. 2nd Conf. on System Adminis-
tration, Networking and Security, 1993.

Fred B. Schneider. Enforceable security policies. Technical Report TR98-1664, Dept.
of Computer Science, Cornell Univ., January 1998.

Fred B. Schneider. Towards fault-tolerant and secure agentry. In Proc. 11th Intl.
Workshop on Distributed Algorithms, 1998. Also available as Tech. report TR94-1568,
Cornell computer science dept.

David L. Sherman, Daniel F. Sterne, Lee Badger, and S. Murphy. Controlling network
communication with domain and type enforcement. Technical Report 523, TIS, March
1995.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

59

Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.
Robinson. Binary translation (for the Alpha AXP architecture). Communications of
the ACM, 36(2):69-81, February 1993.

Daniel F. Sterne, Terry V. Benzel, Lee Badger, Kenneth M. Walker, Karen A. Oos-
tendorp, David L. Sherman, and Michael J. Petkac. Browsing the web safely with
domain and type enforcement. In 1996 IEEE Symposium on Security and Privacy,
1996. Research abstract.

Jeff Uphoff. Re: Guidelines on cgi-bin scripts, August 1995. Post to bugtraq mailing
list. http://www.eecs.nwu.edu/cgi-bin/mfs/files2/jmyers/public html/
bugtraq/0166.html1730#mfs.

Amin Vahdat and Thomas Anderson. Transparent result caching. In Proc. 1998
USENIX Technical Conference, 1998.

David Wagner. Secure worker uploading for TACC. Unpublished manuscript.
http://www.cs.berkeley.edu/"daw/classes/inet-svcs/writeup.ps.

David Wagner and Steven M. Bellovin. A “bump in the stack” encryptor for MS-DOS
systems. In Proc. 1996 ISOC Symposium on Network and Distributed System Security,
1996.

David Wagner, Ian Goldberg, and Eric A. Brewer. Orthogonal security, 1997. Unpub-
lished manuscript.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proc. of the Symp. on Operating System Principles,
1993.

Christian Wettergren. Re: Mime question..., March 1995. Post to bugtraq mailing list.
http://www.eecs.nwu.edu/cgi-bin/mfs/files2/jmyers/public html/bugtraq/
1995a/0759 . html1730#mfs.

