
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript have been printed and distributed without reviewing and edit-
ing as received from the authors: posting the manuscript to SCIS 2005 does not
prevent future submission to any journals or conferences with proceedings.

SCIS 2005 The 2005 Symposium on
Cryptography and Information Security

Maiko Kobe, Japan, Jan.25-28, 2005
The Institute of Electronics,

Information and Communication Engineers

XExt3: The Design and Implementation of a Security Enhanced Ext3
File System

Ji-Ho Cho ∗ Dong-Hoon Yoo ∗ Hyung-Chan Kim ∗ R.S. Ramakrishna ∗

Kouichi Sakurai †

Abstract— In this paper we develop an extended Ext3(XExt3) which means security enhanced file
system. It can be used in generic Linux systems or trusted operating systems (TOS) as a file system.
The XExt3 file system can protect data of a computer system from physical theft by encrypting them.
We concentrate on balancing security, transparency and portability while minimizing computational
overheads. For security and transparency, the XExt3 supports file protection, Linux group sharing,
and the minimization of interactions between users and the system. In the aspect of performance, we
minimize the overheads by implementing the proposed method on a native Ext3 file system in a Linux
operating system. Finally we implement our system as a Linux kernel module for high portability. Our
experimental results show that the XExt3 is about 3 or 4 times faster than previous cryptographic file
systems.

Keywords: Trusted Operating System, File Systems, Linux, Cryptography, Ext3 File System, File
Protection

1 Introduction

Recent security systems reveal their limitations ac-
cording as the methods of attacks have been diversified
and elaborated. Trusted operating systems, in short
TOS, are beginning to attract attention as promising
tools in this regard. A TOS are equipped with the
basic security services and mechanisms to protect, dis-
tinguish and separate classified data in a computer sys-
tem.

Most research on TOS is focused on enhancing access
control mechanisms. The purpose of access control is
to limit the operations that a legitimate user of a com-
puter system can perform. Access control constrains
what a user can do directly, as well as what programs
executing on behalf of the users are allowed to do[1].

However, sometimes, access control can not ensure
confidentiality and integrity of files when the system is
stolen or an attacker bypasses the access control sys-
tem. Also, when an attacker acquires the privileges
of a system administrator or when a system adminis-
trator abuses of his/her privileges, the access control
mechanism is helpless.

Secure file systems are designed to solve these prob-
lems. A Secure file system protects files by encrypt-
ing them. However, the encryption at the user level is
very cumbersome because the user of the system has
to manage the entire process of encryption, decryption
and key management. Therefore, a file system that
∗ Department of Information and Communications, Gwangju

Institute of Science and Technology (GIST), 1 Oryong-dong,
Buk-gu, Gwangju 500-712, Republic of Korea

† Faculty of Computer Science and Communication Engineering,
Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-
5851, Japan

manages the cryptographic process at the kernel level
is more attractive.

There have been several approaches to design secure
file systems[4, 5, 6]. However, the existing methods
incur heavy computational overheads in addition to in-
convenience to users. To overcome these problems, we
propose a secure file system that provides not only se-
curity, but also convenience to the user. Minimizing
the overheads is another goal of our system. Our ex-
perimental result shows that the proposed system is
about 5 times faster than existing secure file systems.

The rest of this paper is organized as follows. Sec-
tion 2 surveys previous and related works. Section 3
describes the design of XExt3. We discuss current im-
plementation state in Section 4. Section 5 shows evalu-
ation of our prototype. Finally we conclude in Section
6.

2 Related Works

2.1 Cryptographic File System

Cryptographic File System, in short CFS, based on
NFS has been developed by Matt Blaze of AT&T Bell
Lab [4]. It was implemented at a user-mode NFS server.
User of this system has to create a directory at the local
or remote file system to store encrypted file. CFS dae-
mon is executed in a user mode. To access encrypted
data, user should use a attach command. The criti-
cal disadvantage of CFS is performance loss caused by
too frequently occurring context switches and data ex-
changes between kernel and user processes. In addition,
it is hard to provide transparency to users and to deal
with key management since the key should be managed
by each individual user for each encrypted directory.

2.2 Transparent Cryptographic File System

Transparent Cryptographic File System[5], in short
TCFS, is was developed in order to make up for CFS’s
defects. Thus, it implanted at a kernel-mode NFS
client. TCFS provides transparency to users without
using attach and detach command. It is possible to
encrypt each file and directory.

Database is used to store user keys and group keys.
It is main problem of TCFS. The stored key is very
vulnerable to attacks. In addition, applying TCFS for
trusted operating system is unreasonable since it was
developed for distributed environment. Therefore, if
we use TCFS as a standalone system, its performance
is unacceptable. Finally, TCFS is available only on
system with Linux kernel version 2.2.27 or earlier.

2.3 NCryptfs

NCryptfs is a secure file system created to provide
convenience and high performance [6][7]. NCryptfs is
stacked on top of an existing file system. Calls access-
ing this directory through the NCryptfs mount are in-
tercepted by the NCryptfs daemon. The daemon then
accesses the file system and retrieves the file. NCryptfs
will then decrypt the file based on a key supplied by the
user. This key is stored in pinned memory and when
the user access a file, NCryp tfs authorizes the user by
getting a password. Like many system, this makes the
security provided only as strong as the user password.

It allows the user to use attachments. NCryptfs uses
attachments in the same way as CFS. The use of attach
facilitates sharing files, because a user could share an
attachment with a group of users who all know the key.
NCryptfs also supports UNIX groups. NCryptfs uses
a cipher that will take an arbitrary sized buffer and
encrypts it to a set size. NCryptfs also stores files in
the file systems with hashes on their actual names to
prevent analysis attacks.

The one piece of information that is not protected
by NCryptfs is the directory structure, which is kept
as is. Also it is still inconvenient because we have to
use attach command to access encrypted files.

3 Design of XExt3

In this section we discuss the design issues of XExt3
file system. Firstly, we will briefly introduce our design
goals: security, convenience, performance and flexibil-
ity. Next we discuss the key management and group
sharing mechanisms. Finally, we will explain the oper-
ation scenarios of two cases.

3.1 Design Issues

Although system designer should consider issues that
more various aspect of system requirements, we will
restrict our discussion to design issues that focused on
security and practical usability.

• Seurity: Security consists of confidentiality, in-
tegrity, and availability. Confidentaility ensures
that files and resources are accessed only by au-
thorized users. That is, only those who should

have access to something will actually get that ac-
cess. By “access,” we mean not only reading but
also viewing, printing, or simply knowing that a
particular data exists. Confidentiality is some-
times called secrecy or privacy[13]. Integrity
means that files can be modified only by autho-
rized users or only in authorized ways. In this
context, modification includes writing, changing,
changing status, deleting, and creating[13]. Avail-
ability means that files are accessible to autho-
rized users at appropriate times. In other words,
if some person or system has legitimate access
to a particular set of objects, that access should
not be prevented. For this reason, availability
is sometimes known by its opposite, denial of
service[13].

• Transparency(Convenience): Software to se-
cure data files is not in wide use today. One of
the main reasons for this is that security software
is not easy to use. Securing data files can not be
done conveniently and transparently. For secu-
rity software to become universal, it has to be
more convenient. Final goal is that the encryp-
tion and decryption is completely transparent to
user and application program[6].

• Performance: Performance is very critical is-
sues for using secure file system. Many vendors
have been minding using secure file system since
almost all secure file systems have poor perfor-
mance.

• Portability(Flexibility): Flexibility is another
very important requirement in designing secure
file system. It means the ease with which a piece
of system can be “ported”.

3.2 Key Management

A key is basically provided by a user in our sys-
tem. Almost all users can input any strings as their key
value. Next, the key value is converted to a new string
with correct length corresponding to cryptographic al-
gorithms using one-way hash function. Our system
mainly provides DES[8], AES[9], and Blowfish[10]. DES
uses 64bits long string as a key and AES uses 128bits
long key. The key of blowfish ranges from 32bits to
448bits. Finally, generated key is stored on key database.
Figure 1 presents the whole process of key generation.

User

AES

DES

Blowfish

DiskMD5
cabbde…c

AAFFC…XX

AAFFC…KK

AAFFC…XX

128 bits

AAFFC…XX

128bits

64 bits

128 bitsConverter

Figure 1: Key generation process

Session start

Converter

Key
validation

Key database

Read/write

Disk

…

Main
memory

…

Main
memory

Crypto engine

Read/write

Disk

Crypto engine

key

file

This is message

AAFFC…XX

128bits

AAFFC…XX

128bits

AAFFC…XX

128bits

CCFF…DFX

128bits

Group
Member’s

key
Owner’s

key

Plain text

Cipher text

Plain text

Cipher text

Group sharing

Plain text

Cipher text

Use of own file

Key destruction

Figure 2: Session mechanisms

We use MD5 (Message-Digest Algorithm 5)[11] as
a one-way hash function. In cryptography, MD5 is a
widely-used cryptographic hash function that was de-
signed by Ronald Rivest in 1991[12]. This algorithm
converts any string to the 128-bit hash value. AES and
Blowfish just use this hash value as a cryptographic key.
We decide to fix the key length of Blowfish with 128
bits long for convenience of usage. In case of DES, we
reduce the key size to 64 bits long.

3.3 Session Mechanisms

In our system, before the encrypted data is used, the
owner must provide the key to the system. Then sys-
tem validates whether the key is correct or not. Figure
2 shows two cases of session mechanisms. More detail
concepts are following.

If user’s key is correct the key is established on main
memory while the session is opened. Keeping the key
in kernel memory is more secure and faster than disk.

After using encrypted file system, user should close
the session for further security. If user leaves his or her
seat without closing the session or users do not use the
computer for quite long time, session is automatically
closed by timeout. When the session is closed, key is
destroyed from the memory.

In conclusion, user can access only through session
mechanism. User read not an original file but an en-
crypted file without active session for preserving con-
fidentiality. Also, user do not allowed writing on pro-
tected partition without active session for preserving
integrity.

Proposed system basically provides Linux group shar-
ing. One different point is session concept. Only when
the own session is open, access of the same group mem-
ber’s file is allowed. First, system validates the ses-
sion key then group member’s key established on main
memory. Only when an owner of file’s key is set on
main memory and the group of owner and the group of
the user that wants to access owner’s file are the same,
encrypted file is decrypted successfully. In case of writ-
ing, it is same as reading. For these mechanisms, we
use permission bits of inode.

Log in

Session Start

Read

Decryption

Application

W rite

Encryption

Storage

Key established No key

Read W rite

Application Error m essage

success
fail

Key timeout

Plain text Cipher text

Cipher text Plain text
Cipher text Plain text

Use without session

Key validation
Key DB

Figure 3: Flow of accessing a file by owner

Log in

Session Start

Read

Decryption

Application

W rite

Encryption

Storage

Key established No key

Read W rite

Application Error m essage

success
fail

Key timeout

Plain text Cipher text

Cipher text Plain text
Cipher text Plain text

Use without session

Key validation
Key DB

Group
member’s

key

Figure 4: Flow of accessing a file by group members

3.4 Operation Scenarios

we present two operation scenarios in using proposed
scheme. One is when an owner uses own file and the
other is when a user who may or may not in same group
with the file owner uses the given files.

As depicted in Figure 3, if a user wants to access an
encrypted file, the user is required to open the session
for the establishment of key. User would open the ses-
sion then system is inputted the key by user. Next,
it stores that key on memory. After key is established
by user, in case of reading the files, encrypted files are
decrypted by established key. Then user could read
plaintext. In case of writing the files, before the plain-
text of files are stored files are encrypted by established
key.

However, if the key is not established due to timeout
or open fail of session our system provides cipher text
to application without decryption. Thus user can not
view of correct contents of the files. User may attempt
to store the file without encryption, then system print
out error messages since unencrypted files are violate
the our goal.

Next case is when a user who may or may not in same
group with the file owner uses the given files. Now we
assume that A is an owner of an encrypted file and B is
a user who wants to access A’s file, respectively. First,
user B start the session then system prompts for the
key from user B. After B input own key, system vali-
dates the session key. Then group A’s key established
on main memory from key database. The second con-
dition is dependent on the underlying access control in
TOS. In case of generic Linux, the user A has to open
the group read permission for the B under the DAC

(Discretionary Access Control) scheme. The Figure 4
shows an instance of group sharing.

4 Implementation of a Prototype

In this section, we discuss cryptographic algorithms
that are used by our system. Next, we introduce over-
all architecture and layered architecture of our system.
Finally we show encryption and decryption process in
XExt3.

4.1 Selection of Cryptographic Algorithms

The following are the implementation issues that re-
lated to cryptographic algorithms.

• Symmetric-key algorithms such as DES, AES, and
Blowfish are provided by kernel. Message digests
algorithms like MD5 is provide in user mode.
We use ‘Scatterlist Cryptographic API’ provided
by Linux kernel as a cryptographic API in ker-
nel mode. The ‘Scatterlist Cryptographic API’
makes a variety of cryptographic algorithms ap-
ply at the Linux kernel mode very easily. For us-
ing cryptographic algorithms in user mode we se-
lect a ‘OpenSSL[15] ’ API that full-strength gen-
eral purpose cryptography library.

• Cryptographic process is time-consuming process.
We focus on implement the encryption and de-
cryption in the kernel to ensure that they are as
fast as possible.

• The MD5 algorithm takes as input a message of
arbitrary length and produces as output a 128-
bit fingerprint or message digest of the input. We
convert from user’s key to its message digest using
MD5 that provided by OpenSSL.

Our system is possible to provide various symmet-
ric key algorithms such as DES, Triple DES, AES, and
Blowfish. We decided that DES uses 64bits key and
AES and Blowfish uses 128bits key in section 3.3.1. To
create a key with correct length, we convert a key from
the user to hash value applying for MD5. Although
it might cause a little overheads, it is safe from the
cracking like a dictionary attack. Also, it provides con-
venient to user since users do not need to input a key
with specific length.

4.2 Overall Architecture

At the user mode, application program uses the sys-
tem calls related to file operation such as open, read
and write, then virtual file system calls specific file
systems such as Minix, MSDOS, Ext2, Ext3, and so
on. Next, each specific file system might access to
disk through device drivers[14][16]. Data goes to buffer
cache and goes to device drivers. Device drivers com-
municate with disk controllers. Our system interposes
the encryption and decryption into Ext3 file system.

We implement our system using kernel module. In
Linux system, primitive services such as interprocess

cipher text

sys_write()

ext3_file_write()

write()

Crypto Engine

generic_file_write()

Plain textMain
memory

…

Figure 5: Encryption Process

Plain text

cipher textt

sys_read()

read()

Crypto Engine

generic_file_read()

Main
memory

…

Figure 6: Decryption Process

communication, process management, systemcall han-
dling, and memory management are provided by gen-
eral kernel. On the other hands, system services such
as file systems, device drivers, Crypto APIs and Net-
working are provided by kernel module. At this module
layer we, we add a new secure file system module that
is dynamically loaded and unloaded.

4.3 Encryption and Decryption

We implemented a prototype of our proposed system
on Linux 2.4.27 modifying Ext3 file system. Although
all system parts are not implemented yet, we imple-
mented the core parts of the proposed system, that is
encryption and decryption parts.

Figure 5 illustrates with a simple diagram of our in-
ternal structure.

If the application program executes the write() in-
struction, then Linux system calls sys write() system
call. Next, Almost all specific file systems that deal
with generic files call generic file write(). Especially,
Ext3 file system first calls ext3 file write() for journal-
ing then call generic file write(). Proposed file system

Table 1: Elapsed times of eah copy operation

1.306s0.827s0.743s0.122sFrom X to X

0.713s0.714s0.564s0.125sFrom EXT2 to X

0.657s0.695s0.630s0.123sFrom X to EXT2

with
Blowfishwith DESwith AESEXT3

X
Copy

1M byte X 8

1.385s1.440s1.255s0.117sFrom X to X

0.788s0.808s0.673s0.215sFrom EXT2 to X

0.717s0.755s0.701s0.131sFrom X to EXT2

with
Blowfishwith DESwith AESEXT3

X
Copy

1K byte X 1024

calls generic file write() after the contents of file are
encrypted by predefined key. Finally, encrypted file
is stored on disk by generic file write(). We used the
symmetric key system as a cryptographic algorithm.

Figure 6 is in case of reading. In this case, data
flows opposite direction with writing. After reading a
file from the disk using generic file read(), contents of
file are decrypted by predefined key. Then decrypted
contents move to read() instruction through sys read().
As a result, application can process a plain text data.

5 Performance Evaluation

In this section we analyze the encryption and decryp-
tion overheads. We experiment XExt3 on three types of
copy operations. It shows the overheads of encryption
and decryption processes. Next, we compare overhead
of our system with previous cryptographic file systems.
As a result, the XExt3 is faster than or equal to them.

5.1 Experimental Results

Table 1 illustrates the performance of our system.
In this table, X denotes a specific file system such as
Ext3, XExt3 with AES, XExt3 with DES, and XExt3
with Blowfish. XExt3 with AES means modified Ext3
by us using AES algorithm as its cryptographic algo-
rithm. XExt3 with DES and XExt3 with Blowfish have
same meaning. The test consists of three types of copy
operations as follows:

1. From X to Ext2: the system copies the files from
each X to Ext2. This test represents overheads of
reading operation compared with original Ext3.

2. From Ext2 to X: the system copies the files from
Ext2 to each X. This test shows overheads of writ-
ing operation compared with original Ext3.

3. From X to X: this test means overall overheads
of each X.

We calculate the overhead of our system based on above
two experimental data. We define overheads as a fol-
lowing equation.

Overheads =
T ime for copy operation in XExt3
T ime for copy operation in Ext3

Table 2: Overheads of XExt3

11.271262449.5431904168.40832983From X to X

4.684558144.7350697673.821116279From EXT2 to X

5.4073729295.7068826415.236548129From X to EXT2

with Blowfishwith DESwith AES
X

Copy

Figure 7: Comparison of overheads

Table 2 show the calculated overheads of EXext3.
Our basis file system is original Ext3 file system. For
example, when copy from Ext2 to original Ext3 takes 1
second, then copy from Ext2 to XExt3 file system with
AES algorithms takes about 3.8 seconds.

From now on, we compare the overhead of XExt3
file system with previously developed cryptographic file
systems such as CFS, TCFS, and NCryptfs. How-
ever, it is impossible that we draw a direct comparison
among four secure file systems since each secure file sys-
tem is executed in specific environments. For instance,
TCFS is available only on system with Linux kernel
version 2.2.27 or earlier. Thus, we take experimental
data from original papers of each file system and then
we calculate the overheads above equation. Figure 7
illustates overheads of our system compared with CFS
, TCFS, and NCryptfs. In read operation, our system
with AES is about 5 times slower than original Ext3
file system while TCFS is about 19 times slower than
original NFS. CFS is about 5 times slower than origi-
nal Ext2 file system. NCryptfs is about 2 times slower
than Ext2 file system.

In write operation, our system with AES is about 3
times slower than original Ext3 file system while TCFS
is about 11 times slower than original NFS. CFS is
about 16 times and NCryptfs is about 3 times slower
than original Ext2 file system. If TCFS is compared
with Ext2 file system, it has loss of performance since
NFS has overheads itself. Therefore TCFS has the
heaviest overheads in compared file systems.

6 Conclusion and Future Work

We designed and implemented a secure file system
for trusted operating system. Our system aims to bal-
ance security and transparency with minimizing perfor-
mance overheads. Also, we should consider the porta-
bility issue.

We achieved security by hiring cryptographic mech-
anisms. Especially our system is secure from theft and
cracking. Even though when an administrator wants to
spy out user’s private data, the system is highly secure.

By eliminating additional attach and detach com-
mands, we achieved transparency. Also our system
provides Linux group sharing while keeping security.
We implemented our system as a kernel module for im-
proving portability.

Finally, we achieved high performance by designing
cryptographic mechanisms to be run in the kernel. Our
system has only cryptographic overheads.

In this paper, the prototype of the XExt3 file system
is implemented. We plan to implement other parts of
our system. Also we will encrypt important meta data
that can give a clue to attackers for guessing original
data.

Another possible feature of our system is integrity
check and recovery. Currently, our system does not
check integrity of data. Recovering integrity of data is
very important for a TOS. Currently we are considering
digital finger printing or digital watermarking as an
integrity checker.

7 Acknowledgement

This research was supported in part by Joint Fo-
rum for Strategic Software Research (SSR) of Interna-
tional Information Science Foundation, and in part by
KAIST/GIST BK21 of Ministry of Education.

References

[1] R. S. Sandhu and P. Samaratiy, “Access Control:
Principles and Practice,” IEEE Communications,
1993.

[2] M. Bishop, “Computer Security: Art and Sci-
ence,” Addison-Wesley, 2002.

[3] C. E. Irvine, “The Reference Monitor Concept as
a Unifying Principle in Computer Security Educa-
tion,” In proceedings of First World Conference on
Information Security Education, IFIP TC11 WC
11.8, pages 27-37, 1999.

[4] M.Blaze, “A Crypographic File System for Unix.,”
In proceedings of the first ACM Conference on
Computer and Communications Security, 1993.

[5] G. Cattaneo, L. Catuogno, A. Del Sorbo, and
P. Persiano, “The Design and Implementation
of a Transparent Cryptographic Filesystem for
UNIX.,” In Proceedings of the Annual USENIX
Technical Conference, FREENIX Track, pages
245-252, June 2001.

[6] C. P. Wright, M. Martino, and E. Zadok,
“NCryptfs: A Secure and Convenient Crypto-
graphic File System.,” In Proceedings of the An-
nual USENIX Technical Conference, pages 197-
210, June 2003.

[7] E. Zadok, I. Badulescu, and A. Shender, “Cryptfs:
A stackable vnode level encryption file system,”
Technical Report CUCS-021-98, Computer Sci-
ence Department, Columbia University, June
1998.

[8] U.S. Department of Commerce, “Data Encryption
Standard (DES),” January 22, 1988, FIPS PUB
46-1 (C13.52).

[9] J. Daemen and V. Rijmen, “The Design of Rijn-
dael: AES - The Advanced Encryption Standard.”
Springer-Verlag, 2002

[10] B. Schneier, “Description of a New Variable-
Length Key, 64-bit Block Cipher (Blowfish),” In
Proceedings of Fast Software Encryption 1993,
pages 191-204, 1993.

[11] http://userpages.umbc.edu/ mabzug1/cs/md5/md5.html

[12] R. L. Rivest, “The MD5 Message Digest Algo-
rithm,” Internet RFC 1321, 1992.

[13] C. P. Pfleeger, and S. L. Pfleeger, “ Security in
Computing,”, Prentice Hall, 3rd Edition, 2002

[14] D. P. Bovet, and M. Cesati, “Understanding the
LINUX Kernel,” O’Reilly, 2nd Edition, 2003

[15] http://www.openssl.org/

[16] R. Love, “Linux Kernel Development,” Devel-
oper’s Library, 2004

