All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript have been printed and distributed without reviewing and edit-
ing as received from the authors: posting the manuscript to SCIS 2005 does not
prevent future submission to any journals or conferences with proceedings.

SCIS 2005 The 2005 Symposium on
Cryptography and Information Security
Maiko Kobe, Japan, Jan.25-28, 2005
The Institute of Electronics,
Information and Communication Engineers

Construction of RBAC-Enforceable Security Automata

Hyung Chan Kim * Wook Shin f

R. S. Ramakrishna *

Kouichi Sakurai §

Abstract— Conventional access control models have been supported confidentiality and integrity
reflecting required organizational security policy. However, attacks involving operational semantics or
concurrency can not be considered with generic access control because of its behavioral characteristic.
This paper propose an RBAC-Enforceable Security Automata to trace the sequential access events of
trusted operating systems hardened with Role-Based Access Control (RBAC). Product construction of
such an automaton can detect the condition of time-of-check-to-time-of-use (TOCTTOU) attack which

concerns with concurrency.

Keywords:

access control, behavior control, time-of-check-to-time-of-use, role-based access control,

operating system security, trusted operating systems, automata

1 Introduction

We have been widely adopted role-based access con-
trol (RBAC) [1, 2] as major access control enforcement
mechanism in variable systems including operating sys-
tems, since it offers flexibility in enforcement, and pol-
icy neutrality. It also lessens the burden of administra-
tion. Trusted Operating Systems (TOS), an operating
system which includes a security kernel providing pro-
tection from diverse unknown threats, introduce RBAC
as their core access control mechanism in many research
projects as well as commercial products.

TOS involves operational dynamics: each processes
produce a sequence of operational semantics, and some-
times a set of processes interoperate via inter-process
communication (IPC) facilities such as file, socket, shared
memory, and so on. However, the prevalent research
trend of RBAC has intensively illuminated the reflec-
tion of organizational security policy, not the behavior
of overall system executions. In other words, researches
have focused on the engineering of formation amongst
access entities by making relations between subject and
object based on their security criterion. With this en-
forcement, operations are permitted under the policy
approval but the order of operations is not restricted.

There is a class of attack in that the order of op-
erations is important. Attacks exploiting the runtime
program environment of setuid (set user id) assigned
application in UNIX operating system is one of such
example. In terms of access control, setuid mecha-
nism can be considered as temporal privilege transi-
tion to the other privilege. Sending a mail or changing
password requires such kind of operations. Many run-

* Department of Information and Communications, Gwangju In-
stitute of Science and Technology (GIST), Gwangju 500-712,
Rep. of Korea (kimhc@Qgist.ac.kr)

t GIST (sunihill@gist.ac.kr)

¥ GIST (rsrQgist.ac.kr)

§ Faculty of Computer Science and Communication En-
gineering, Kyushu University, Fukuoka 812-8581, Japan

(sakurai@csce.kyushu-u.ac.jp)

time program attacks — such as buffer overflow, format
string, double free, and so on — change the execution
flow of process under the legal access context: in view of
discretionary access control (DAC) in UNIX, such priv-
ilege transition via setuid mechanism is permitted, but
there is no restriction on the execution sequences. Set-
ting aside DAC-enforced system, any operating system
which supports privilege transition in their access con-
trol mechanism can be harmed with similar manner [3].
Moreover, attacks involving concurrency of processes,
such as time-of-check-to-time-of-use (TOCTTOU) at-
tacks [4], also can not be considered effectively in con-
ventional schemes.

This work focuses on the operational semantics in
terms of access control. Performing an atomic oper-
ation corresponds to a tuple of subject, object, and
operation with the valid session under RBAC policy
configuration. A set of tuples can be thought as exe-
cutions with which we can further enforce behavioral
restriction against attacks which exploits the order of
operations or concurrency. We propose the construc-
tion of security automata for enforcing Role-Based Ac-
cess Control (RBAC) for Trusted Operating Systems.
We model our automata to be EM (Execution Moni-
tor) enforceable [5] so that can restrict the sequential
executions of program behavior in operating systems.
Moreover, the product construction of execution moni-
tor also shown here to protect TOCTTOU attacks con-
sidering the operational concurrency.

The rest of this paper is organized as follows. In sec-
tion 2, the concept of policy with EM property and
RBAC are presented. Section 3 shows how attacks
can exploit in view of operations under the legal access
context. We propose security automata which have
RBAC access context and also make product construc-
tion against TOCTTOU attacks in section 4. Discus-
sion will be given in section 5 and the paper ends with
conclusions in section 6.

RH

UA PA

Figure 1: Model of Role Based Access Control

(RBACY6)

2 Background

In this section we briefly shows the concept of RBAC,
and the concept of Execution Monitor is given based
on the work of Alpern, Schnneider, and Bauer [5, 6, 7].

2.1 Role-Based Access Control

The main characteristic of RBAC [1, 2] [Fig. 1] is
that it does not directly associate a subject with an
object. Instead, by conceiving the role which repre-
sents job functions or responsibilities in a system or an
organization, RBAC greatly eases access control ad-
ministration. A conventional DAC or a MAC system
usually involves direct association between a subject
and an object. If there are hundreds of thousands of
access entities — a possibility in large enterprises — ad-
ministrators of DAC or MAC system have difficulty in
managing all the access entities. A specific role gathers
a set of necessary permissions — defined as the carte-
sian product of the set of operations and the set of
objects — in order to perform a certain duty. Hence, if
an administrator of the RBAC system wants to make a
subject perform a given duty, then the subject is simply
assigned an appropriate role.

The abstraction of role offers several advantages as
it enables us to co-opt many useful methods from the
field of software engineering. Due to the similarity of
roles and class objects, one can adopt object oriented
approach just as for class objects. For example, if a role
is once codified, then reusability amounts to reassigning
subjects to the role of the same responsibility. Similar
duties can be easily constructed by modifying only a
few attributes of an existing role.

Nowadays, many projects which aim to harden oper-
ating system include RBAC: Security-Enhanced Linux
[8], GRSecurity [9], and many other commecial TOSs.

2.2 Excution Monitor
2.2.1 EM-Enforceable Security Policy

Schnneider developed the properties of execution which

is enforceable under security policy with the concept of
execution monitor (EM) [5]. Here we give notions of
EM-enforceable systems and security automata. In this
work we emphasize operational semantics with access
control context.

A system performs a sequence of atomic operations
ai,as,...,a, € ¥, where ¥ is a set of operations (access

events). We use o and 7 to denote a finte sequence
of operations. A system execution II consists of each
atomic operations, therefore II C ¥* and o, 7 € II. For
any sequence o = aja20as...0y,

0’[2] = a;
o[..i] = apay...a;
oli..] = a;aiq1...ap.

A security policy, in sense of operational semantics !
is defined as a predicate on sets of executions. A set of
executions II statisfies a policy P if and only if P(X)
equals true.

A property is a set of infinite sequence of program
states [6]. A security policy P is intended behavior un-
der execution monitoring if P is specified by a predicate
of the form

P(M) : (Yo €1 : P(0)) (1)

where P is a predicate on executions and it decides
whether a given individual execution have to be termi-
nated or not.

The condition for a property to be EM-Enforceable
is that P must be prefix-closed:

(Vprefiz(c),o € I : ﬁp(prefz;a:(a))
= (Vo € II: =P(0))) (2)

Together with (1) and (2), safety properties is defined
to specify that “bad things” do not happen during exe-
cution [6]. If an operational sequence deviates from the
criterion, then it must be terminated after some finite
operations.

N A~

(Vo € IT: ~P(0) = (3i : ~P(0]..i]))) (3)

2.2.2 Security Automata

A safety properties can be recognized by a variant of
Biichi Automata: Security Automata (SA) is a quadru-
ple.

- X¥: a countable set of access events,

- (): a countable set of automaton states,

- ¢o € @: an initial state,

- 0:(@Q XX — (@ is a partial transition function.

Access events are gorverned by SA if a transition is
defined during the system execution. Recognition of
a sequence of access events means that the sequence
is under the currently enforecd policy thereby restrict-
ing the behavior of operations. Note that an access
event is simply a tuple of object, operation, and sub-
ject which is activated context by conventional access
control schemes.

1 We distinguish the term security policy with that of rules that
have been unambiguously expressed when enforcing organiza-
tional policy such as DAC, MAC, or RBAC.

Table 1: Example of Operational Access Context in UNIX

Intended Behavior

Exploited Behavior

(jim,jim,root,* *)

(jim,jim,root,* *)

(jim,jim,root,seteuid(root),e)

(jim,jim,root,seteuid(root), €)

(jim,root,root,open, /abc)

(jim,root,root,open, /abc)
(jim,root,root,read,/abc)

(jim,root,root,read,/abc)

(jim,root,root,lseek, /abc

(jim,root,root,lseek,/abc)

(jim,root,root,execve,/bin/sh)

)
(jim,root,root,write,/abc)
(jim,root,root,close,/abc)

(jim,root,root,**)

OO ~J| O U x| W DN =

(jim,root,root,exit,e)

3 Scenario of Attacks with Operational
Access Context

In this section we analyse two types of attacks which
can be viewed with operational semantics in operating
systems.

3.1

Todays we encounter a various type of program run-
time attacks such as Stack Overflow [10], Heap Over-
flow, Double Free, Format String, and so on. Most at-
tack aims to acquire privileged shell in UNIX/Linux op-
erating systems. The problem is on that conventional
access control in UNIX can not effectivly protect the
above attack. Precisely speaking, the exploiting pro-
cess can be achieved under legitimate access control
context.

In generic Linux operating system, access control is
achived based on permission bits and this is categorized
in discretionary access control (DAC). sometimes a user
temporailiy needs to transit its privilge for some special
purpose. Representative example is chaging password
of its own, and during the modification of password file
the user proccess is in privileged mode. In UNIX OS,
this function is supported by setuid (set user identity)
mechanism. User process can be transited its privi-
lege by setting effective uid (euid), to be equal to suid.
Therefore, if suid is the uid of super user (zero), user
process can perform privileged operation during the
transited execution. Finishing prvileged jobs, the priv-
ileged mode is terminated by terminating the process:
users can execute only defined operations designated
by suid program.

However, if a suid program have a runtime bug and
an attacker can spawn a shell during the execution, the
transited privilge can not be returned and the user pro-
cess stays at privileged mode beyond its original priv-
ilege. For the description of an example, we define ac-
cess context in UNIX as ¥ = (uid, euid, suid, op, obj),
which is a tuple of uid (subject), effective uid, saved
uid, operation, and object, respectively.

Table 1 shows the operational access contexts of a
simeple example. Left column contains a sequence of
intended behavior and unwanted case is in right col-
umn. * means some arbitrary symbol for each item
and € means empty. In line 2, the user program tran-
sited to its privilege to root (superuser) to write some

Attack under Legitimate Access Context

(jim,root,root,*,*)

contents into a protected file (/abc) for special pur-
pose. Note that this is legal under the system policy
configured by administrator. However, an attacker ex-
ploits the program between line 5 and 6 due to some
buffer management bug contained in the program and
executes a shell. From that point, the attacker can
flourish full system privileges and this is still legitimate
under the access control enforcement because an at-
tacker only changes its operations and doesn’t violate
the DAC mechanism: one just prolonged one’s staying
at privileged level and there are no restriction on the
operational semantics.

This kind of attack can be possible in every oper-
ating system if the given enforcement mechanism sup-
port some sort of privilege transition [3]. We can de-
fine ¥ = (user,role,opr,obj) to depict the behavior
of RBAC context. There might be privilege transition
by role transition of a user. In case of SELinux [§],
it adopt type transition to enable privilege transitions
(Role transition was also availble in SELinux and now
it is deprecated.) and it is part of type enforcement:
another access control mechanism beyond conventional
permission based scheme.

3.2 TOCTTOU Attack

Another attack senario is attack involving concur-
rency known as time-of-check-to-time-of-use (TOCT-
TOU) attack [4, 11]. TOCTTOU attack can be caused
by invalid assumption of programmer that the refer-
ence of the resource will not chagne between the time
of check and the time of use. Unfortunately, this is not
true because modern operating systems handle mul-
tiple process concurrently and process scheduler takes
charge of its management. We take an archetypal TOCT-
TOU binding flaw example [4] to see the procdure of
the attack in Table 2. The open system call is invoked
right after the access system call and programmer do
not imagine that something can happen between two
consecutive system calls. However, system scheduler
is involved and there is possibility of performing an-
other actions by another processes between them. As
an example shown here, if the reference of temporary
file is modified by unlink and symlink in stage 2 and 3
during the time scheduled for the attacker’s program,
the system program writes some parameter-offered con-
tents not to the orignal file but to /etc/passwd file in

Table 2: An Archetypal TOCTTOU Attack

| System Program |

Attacker’s Program

(system,root,root,access,/tmp/abc)

(jim,jim,jim,unlink, /tmp/abc)

(jim,jim,jim,symlink, (/etc/passwd,/tmp/abc))

(system,root,root,open,/tmp/abc)

Y | W N =

(system,root,root,write,/tmp/abc)

stage 5. Hence attacker can insert dummy accounts to
/etc/passwd file without having privilege of adminis-
trator.

TOCTTOU attacks can be protected if attack sig-
nature is obtained from analysis of specific attack case.
However, attacks are still vaild even recently [12], and
range of attacks are not confied to file race condition
but various senario is possible including database sys-
tems, or Java class loader [11], thus we have to es-
tabilsh fundamental countermeasure to cope with un-
known TOCTTOU attacks.

4 A Proposal of Operational Constraint
with RBAC-Enforceable Security Au-
tomata

In this section, we propose an security automata
which can constrain operations in trusted operating
systems hardend with RBAC.

4.1 RBAC-Enforceable Security Automata

Our framework simply extend existing RBAC con-
figuration which constrains orgarnizational information
flow in a system. Upon RBAC configuration, we intro-
duce Execution Monitors (EM) to track the behavior
of operations in terms of RBAC access contexts. Each
RBAC contexts represent granted access by the RBAC
reference monitor. Even though a given access events
is granted to execute by the reference monitor, it is
needed to be examined by EM relating with other ac-
cess events. The behavioral policy can be configured
with the language acceptable by the state machine.

The main components of the core RBAC are given
below.

USER,ROLE,OPR,OB.J: the set of users, roles,
operations and objects.

- PERM = OPR x OB/J: the set of permissions.
SESSION: the set of sessions.

- UA CUSERXx ROLE: a many-to-many user-to-role
relation.

- PA C PERM x ROLE: a many-to-many role-to-
permission assignment relation.

RH C ROLE x ROLE: partial ordering on ROLE
called the inheritance relation, i.e.,

- For Vry,ro € ROLE;,r1 > ry means ry is an
ancestor of ro. (Equivalently, rs is a decen-
dent of ry.)

Some functions for RBAC relations are defined as
follow.

users(r : ROLE) — 2USER: ygers assigned to a role
r, namely,

- users(r) = {u e USER | (u,r) € UA}

active_user(s : SESSION) — USER: the mapping
from a session to a user.

- active_roles(s : SESSION) — 2ROLE. the map-
ping from a session to a set of roles, i.e.;

- active_roles(s) C
{r € ROLE | (active_user(s),r) € UA}

perms(r : ROLE) — 2PPEM. permissions assigned
to a role r, namely,

- perms(r) = {p € PERM | (p,r) € PA}

inherited_perms(r : ROLE) — 2PERM inherited
permissions on role r, namely,

- inherited_perms(r) =
{p € PERM | (Ir' < r)[(p,r') € PA]}

authorized_perms(r : ROLE) — 2PERM aytho-
rized permissions on role r, defined as,

- authorized_perms(r) =
perms(r) U inherited_perms(r)

RBAC-Enforceable Security Automata (RBAC-SA)
is a quintuple: (RBAC,X,Q, qo,) such that

- RBAC": an access control configuration,

- Y =USERX ROLE x OPR x OBJ: an access con-
text, i.e.,

- {(user,role,opr,obj) | Isession : SESSION,
[user € users(role)Aoprxobj € perms(role)A
user € active_user(role)A
role € active_role(session)A
opr x obj € authorized_perms(role)]}

- (): a countable set of automaton states,

- @o € @: an initial state,

- 0:@Q x X — (@ is a partial transition function.

With RBAC-SA, gy — ¢ for some ¢ € (means the
acceptance of access events sequence w. The recogni-
tion of behavioral policy P by an acceptor M is:

{wEE*|EIqEQ:q0i>q} (4)

Therefore, if a given sequence is out of in P, then
the behavior is not intended. We can consider the con-
figuration of negative behavior as well as intended be-
havior with negating the accetable language. With the
negative specification, we can constraint the process
behavior seteuid. * .execve not to be executed in that
sequence against the exemplified attack in Table 1.

Here we defined security automata to be determin-
istic. However, the choice can be nondeterministic de-
pending on the behavior configuration method.

4.2 Product Construction of RBAC-SA

TOCTTOU attacks involve concurrency among pro-
cesses and the product construction of states of SA is
needed to capture those conditions. Our consideration
is on multiple Execution Monitors (EM) which trace
each processes in TOS.

For example, thinking with the example in Table 2,
an EM (E M) which is monitoring the system program
and another EM (EM,) monitoring attacker’s process
are respectively running in a system. Noting only op-
erations, EM; will accept a string access.open.write
and EM, will accept a string unlink.symlink in some-
times. The idea of detecting TOCTTOU attack is on
the merge production of languages of multiple accep-
tors corresponding each EMs.

- EM; = (RBAC,X,Q1,01,61)

Y

- EM, = (RBAC, %,Q2,02,62)

Y

- EM, = <RBAC,Z,Q||70H76H>

Y

-Q3=Q1xQ2={(p,q) I PEQ1NqEQ2}
- 6,((q1,92),a) = {(61(q1,a),q2), (q1,62(q2, @) }

EM, traces the evolution of global product states of
processes. If EM, detect an instance of merged string
such as access.open.unlink.symlink.write, as a neg-
ative behavior then we can enforce all involving pro-
cesses have to be terminated as we EM, has decided
that the condition of TOCTTOU attack are in current
global state. We define a new paradigm of policy mit-
igating a sort of attacks with concurrency as follow:

¢ Conflict of Behavior (Policy) : COB(qi,q) if two

COB states are coincidently met, then involving
processes are forced to be terminated.

Pairwise extension of the merge production of SA
can enforce on overall processes in a system.

5 Discussion

The consideration of behavioral aspects is mostly the
area of intrusion detection. Intrusion Detection Sys-
tems (IDS) with the normal behavior database tracks
the sequence of processes and terminates a process if
it deviates from the database. In view of access con-
trol, each atomic operation, a subject operates on an
object, passed from IDS sensor is granted with the be-
havioral policy. Our framework can be thought, in
part, as an intended behavior specification based in-
trusion detection [13]. Because we can built intended
behavior specification as acceptable strings by Securiy
Automata. However, specification based IDS does not
care about the any properties except subject of ac-
cess control: if we say an access control with speci-
fication based inrusion detection, only identity based
access control (IBAC) is possible in snapshot of opera-
tions, because each behavior specification is identified
by corresponding user id.

Our final intention is the construction of unified model
of access control with intended behavior constraint in
operating systems. Practically, coexistance of enhanced
access control and intrusion detection system is very
heavy in general operating systems. Moreover, the
configuration of trusted systems (with enhanced access
control) and intrusion detection systems are not negli-
gible. Security administrator has to attention on both
configurations.

If we can support unified security framework com-
prising both technologies, we can mitigate the budden
of security configuration as well as the system perfor-
mance penalty.

Another issue with simultaneous attention of access
control and behavior recognition is noninterference. A
system is noninterference secure if for all users, their
output sequence is the same as the output sequence
purged of inputs from higher users. Ko et al. [14]
present an intrusion detection based on the concept
of noninterference for detecting race condition attacks.
We believe that our framework can support this con-
cept with operation traces and role hierarchy.

6 Conclusion

In this paper, we have examined attacks which can
not be constrained in static configuration of access con-
trol effectively. Considering operational semantics, we
have proposed a framework to trace of prosses behavior
in operating systems with Security Automata which is
EM-Enforceable and its context reflects RBAC access
events. Moreover, the merge type of product construc-
tion of SA supports the detection of TOCTTOU at-
tacks with conflict of behavior policy enforcement.

We have plans to investigate the applicability of some
conventional security policies with EM monitor.

Acknowlegement This research was supported
in part by Joint Forum for Strategic Software Research
(SSR) of International Information Science Foundation

of Japan, and in part by KAIST/GIST BK21 of Min-
istry of Education of Korea.

References

[1] D. Ferraiolo, J. Cugini, and R. Kuhn, “Role Based
Access Control: Features and Motivations,” In
Proc. of Computer Security Applications Confer-
ence, IEEE Computer Society Press, 1995.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein and R.
Chandramouli, “Role-Based Access Control Mod-
els,” IEEE Computers, Vol. 29, No. 2, pp. 38-47,
Feb. 1996.

[3] H. C. Kim, R. S. Ramakrishna, K. Sakurai, “On
the Privilege Transitional Attack in Secure Operat-
ing Systems,” In Proc. of Computer Security Sym-
posium 2004 (CSS2004), Vol. I, pp. 559-564, 2004.

[4] M. Bishop and M. Dilger, “Checking for Race Con-
ditions in File accesses,” Computing Systems, Vol.
9, No. 2, pp. 131-152, 1996.

[5] F. B. Schneider, “Enforceable Security Policies,”
ACM Trans. on Information and System Security,
Vol. 3, No. 1, pp. 30-50, Feb. 2000.

[6] B. Alpern and F. B. Schneider, “Recognizing Safety
and Liveness,” Distributed Computing, Vol. 2, pp.
117-126, Feb. 1987.

[7] L. Bauer, J. Ligatti, and D. Walker, “More En-
forceable Security Policies,” Tech Report TR-649-
02, Princeton Univ., 2002.

[8] P. Loscocco, and S. Smalley, “Integrating
Flexible Support for Security Policies into
the Linux Operating System,” In Proc. of
the FREENIX Track: 2001 USENIX Annual
Technical ~Conference (FREENIX’01), 2001.
(http://www.nsa.gov/selinux/index.html)

[9] http://www.grsecurity.net/

[10] Alphe One, “Smashing The Stack For Fun And
Profit,” Phrack Vol.7 Issue. 49, File 14 of 16, 1996.

[11] J. C. Lowery, “A Tour of TOCTTOUs,” SANS
GSEC practical v.1.4b, Aug 2002.

[12] SecuriTeam, “Wget Race Condition Vulnera-
bility Allows a Symlink Attack,” May 2004.
(http://www.securiteam.com/)

[13] P. Uppuluri and R. Sekar, “Experiences with
Specification-based Intrusion Detection,” In Proc.
of Recent Advances in Intrusion Detection, LNCS
9212, pp. 172-190, 2001.

[14] C. Ko, and T. Redmond, “Noninterference and In-
trusion Detection,” In Proc. of IEEE Symposium on
Security and Privacy, pp. 177-187, 2002.

