

Extended Role Based Access Control for Trusted Operating Systems and its Coloured Petri Net Model

Gwangju Institute of Science and Technology

SHIN, Wook

Intruder

Trusted Operating System (TOS)

 App. level security solutions can be bypassed [1]

Intrusion Detection System (IDS)
 and Firewall are executed
 in application level

Security Facilities (IDS, Firewall, etc)

App. Level bypass

OS Level System Resources Important Information

 TOS is an even more fundamental security solution

"Without TOS, all security efforts result in Fortress built upon sand"[2]

App. Level
OS Level
Trusted OS

Insufficiency of Current Access Controls

- Current Access Controls
 - Control Accesses Based on Instant Access Information
 - They cannot block some kinds of attacks
 Ex) race condition attacks

Additional Constraints of E-RBAC

- We propose an extended access control
 - Extend the vision and the functionality of the concept of access control based on the sequence of operations
- Subject Abstraction and Object Abstraction
 - Roles: a set of users (subject-abstraction)Ex) Secretaries := {John, Michael, Tom}
 - Behaviors: a set of permissions (object-abstraction <u>E</u>x) FileOpSet := { f_open, f_close, f_read, f_write}
- Operations in E-RBAC
 - expressed in the Behavior layer
 - Permitted operations without procedural restrictions
 - Prohibited operations without procedural restrictions
 - Permitted execution sequences of operations (**Positive** procedural constraints, Positive PC)
 - Prohibited execution sequences of operations (Negative PC)

Newly Added Components to express "Execution Sequences"

Extended-Role Based Access Control

- Extended RBAC (E-RBAC)
 - Core E-RBAC
 - Constrained E-RBAC
- The Conceptual Diagram

Modeling Behaviors

Normal and Dangerous behaviors can be described

A Formal Model for E-RBAC

- We need a formal method to specify and verify security configuration of an E-RBAC system
- We define
 - a new formal model Constrained Coloured Petri Nets (CCPN)
 - based on Coloured Petri Nets (CPN) formalism
 - CCPN describes access matrix information and procedural information at the same time

Constrained CPN (CCPN)

- Main Components of Coloured Petri Net (CCPN)
 - Additional Component: Access Matrix
 - row: subjects
 - column: objects
 - entry: permissions
 - Interpretation: CPN Components are interpreted as AC entities
 - Tokens: Access Subjects
 - Places: Access Objects
 - Transitions: AEFs (Access Enforcement Function)
 - Modified Enable Condition

Testing a configuration with CPN

- We can test security related properties by
 - Simulation
 - Formal Analysis
- Example System Configuration
 - USERS = $\{u_1, ..., u_i\}$
 - ROLES = {SysAdmin, User, r_1 , ..., r_i }
 - Objects = {logfile, mail_prg, file₁, ..., file_k}
 - Modes = {read, write, open, close, execute, link, unlink}
 - Behaviors = {ExecuteMailProgram, AccessLogFiles, b₁, ...,
 b_n}
- Using the formal method, we can correct security configuration errors

Simulation Example

- Analysis by Simulation: A Positive PC Example
 - The sets of execution sequences are performed well
 - {open-read*-close} or {open-write*-close}

(uid, sid, oid, mode, rtok, rp, behav)

mail_exec [mode=md_ex, oid=mailp

Formal Analysis

- Analysis by Formalism
 - Liveness
 - Liveness check for the transition of attack detection
 - We can find and remove the possibility of being attacked

Formal analysis results

(uid, sid, oid, mode, itok, rp, behav) (uid, sid, oid, mode, rtok, rp, behav) mail_rur op_fetch2 (uid, sid, oid, Mode.ran(), rtok, rp, behav) (uid, sid, oid, mode, rtok, rp, behav) @+DELAY0 [mode=md_ul] (uid, sid, oid, raode, rtok, rp, behav) (uid, sid, oid, mode, rtok, rp, behav) ide.ran()), itok, rp, behav p_fetch3 uid, sid, oid, mode, rtok, rp Token (uid, sid, oid, mode, itok, ip, behav) (uid, sid, oid, mode, ttok, rp, behav) d, mode, rtok, rp, behav) Liveness check of this transition

Dead Markings: 6 [359,221,169,144,189,...] Dead Transitions Instances: Remove a dangerous NegativeRestriction1'link 1 NegativeRestriction1'terminate Overview'dummu 1 Live Transitions Instances: None

> Modified configuration (Prohibit the unlink operation)

Original configuration

operation

An Implementation

- The Implementation Environment
 - IFC-ETK100: An Embedded Board
 - CPU: SE3208(32 bit EISC Processor)
 - Memory:
 - 4M ROM, 4M Flash, 16M SDRAM
 - OS: uClinux-2.4.19

 Successfully detects race condition attacks


```
Sep 2 2004
                                  1024 Jul 8 2003 mnt
                                        Apr 17 16:55 proc
                                  1024 Jul 8 2003 root
                                  1024 Jul 8 2003 sbin
                                  1024 Apr 17 16:55 tmp
                                  1024 Sep 2 2004 usr
> /bin/themis_forkattack
attack starts
fork to raceI'm the child
. Exec sendmail
Sending mails...
Γο... johndoe@dummy.net
I'm the parent, child has pid 10
2. unlink
DEBUG> An attack is detected
 ->attack finished
pid 9: failed 4096
> Messages: hello
영어][완성][두벌식]
```

Performance Test

- Performance Measurement
 - Time costs of the execution of a simple program
 - Time costs of the execution of a file copy (512bytes)
 - Time costs of the execution of a simple program that have procedural constraints
- Results

Our system: 10 % overhead

Overhead of other systems

-A current TOS implementation (SELinux): 5%

-A current application level IDS solution (Snort): 10%

Conclusion

- The achievements
 - Extended RBAC Model
 - The vision and function of access control are extended
 - The attacks which consist of ordinary operations are denied
 - CPN Model for E-RBAC
 - Hybrid model for access control
 - Helpful for security administration
 - Trusted Embedded OS
 - E-RBAC can be implemented with reasonable overheads

Bibliography

- [1] T. Ptacek and T. Newsham, "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection", 1998.
- [2] D. Baker, "Fortresses built upon sand", In Proceedings of the New Security Paradigms Workshop, 1996.
- [3] D. Gollmann, "Computer Security", John Wiley & SONS, 1999.
- [4] CPN Tools: http://wiki.daimi.au.dk/cpntools/
- [5] M.Gasser, "Building a Secure Computer System", van Nostrand Reinhold, 1988.
- [6] M. Bishop, "Computer Security: Art and Science", Addison Wesley Professional, 2003
- [7] K. Jansen, "Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use", Vol. 1-2, Springer Verlag, 1992
- [8] Department of Defense (U.S.), "Department of Defense Trusted Computer System Evaluation Criteria", Department of Defense Standard(Dod 5200.28-STD), Library Number S225, 711, December 1985.
- [9] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli, "Proposed standard for Role Based Access Control," ACM Transactions on Information and System Security, vol. 4, no. 3 (August, 2001) - draft of a consensus standard for RBAC.